异色瓢虫两个单倍体基因型的生物学特性比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison in Life History Traits of Two Haplotypes in Harmonia axyridis(Coleoptera: Coccinellidae)
  • 作者:张欢欢 ; 李洪冉 ; 赵日那 ; 孟玲 ; 李保平
  • 英文作者:ZHANG Huanhuan;LI Hongran;ZHAO Rina;MENG Ling;LI Baoping;College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests,Ministry of Education;
  • 关键词:基因型 ; 表型 ; 生物学 ; 生存 ; 生殖
  • 英文关键词:genotype;;phenotype;;biology;;survivorship;;reproduction
  • 中文刊名:ZSWF
  • 英文刊名:Chinese Journal of Biological Control
  • 机构:南京农业大学植物保护学院/农作物生物灾害综合治理教育部重点实验室;
  • 出版日期:2019-06-14 17:25
  • 出版单位:中国生物防治学报
  • 年:2019
  • 期:v.35
  • 基金:国家重点研发计划(2017YFE0104900)
  • 语种:中文;
  • 页:ZSWF201904005
  • 页数:6
  • CN:04
  • ISSN:11-5973/S
  • 分类号:43-48
摘要
单倍体基因型(单倍型)与表型的关系是认识物种适应分化的重要依据。异色瓢虫Harmonia axyridis(Pallas)有多种单倍型,我们从南京地区的种群中发现两种优势单倍型(I型和II型),且这两种单倍型在自然界中数量差异较大。为了探究这两个优势单倍型异色瓢虫生物学特性的差异,在室内条件下以豌豆修尾蚜Megoura japonica(Matsumura)为食物,观察这两个单倍型的幼虫期死亡率和发育历期、雌成虫终身产卵量和卵孵化率等生物学参数。结果表明,单倍型-I和单倍型-II的幼虫发育历期差异显著,分别为14.38和13.75 d;单倍型-I在幼虫各龄期的死亡率均低于单倍型-II,分别为13.33%和29.20%(1龄)、5.49%和13.75%(2龄)、1.16%和4.35%(3龄)、2.35%和10.61%(4龄)。单倍型-I和单倍型-II的成虫终身产卵量无显著差异,分别为936粒和887粒;卵孵化率差异显著,单倍型-I的卵孵化率(64.53%)高于单倍型-II(60.99%)。综合来看,异色瓢虫的两个单倍型在自然界存在数量差异的原因可能是其在生殖和发育上的差异造成的。
        Connecting genotypes and phenotypes improves our understanding of evolution of the organism.Harmonia axyridis has a variety of haplotypes, among the haplotypes presented in H. axyridis, we screened two dominant haplotypes(I and II) from the population of Nanjing with asymmetric number in natural condition. In order to explore the differences in the biological characteristics of these two dominant haplotypes, we observed the developmental and reproductive performances from egg-hatching to adulthood of these two haplotypes while feeding on the aphid Megoura japonica(Matsumura) under laboratory conditions. The results indicated that the larval developmental duration of haplotype-I and haplotype-II was significantly different, which was on average 14.38 d for Haplotype-I and 13.75 d for Haplotype-II. Haplotype-I was lower than Haplotype-II in survivorship across successive larval stages, 13.33% and 29.20% for L1, 5.49% and 13.75% for L2, 1.16% and 4.35% for L3, and 2.35% and 10.61%for L4, respectively. The two haplotypes did not differ in female lifetime fecundity, which was on average 936 eggs per female for Haplotype-I and 887 for Haplotype-II. Haplotype-I was higher than Haplotype-II in hatching rate of eggs,64.53% for the former and 60.99% for the later. Overall, the difference in the number of two haplotypes of the H.axyridis in nature probably be due to differences in reproduction and development.
引文
[1]魏书军,陈学新.昆虫比较线粒体基因组学研究进展[J].应用昆虫学报,2011,48(6):1573-1585.
    [2]Wolstenholme D R.Animal mitochondrial DNA:structure and evolution[J].International Review of Cytology,1992,141(1):173-216.
    [3]Wilson A C,Cann R L,Carr S M,et al.Mitochondrial DNA and two perspectives on evolutionary genetics[J].Biological Journal of the Linnean Society,1985,26(4):375-400.
    [4]Zakharov I A,Goryacheva I I,Romanov D A,et al.Mitochondrial polymorphism in invasion and native populations of Harmonia axyridis[J].Ruassian Jornal of Genetic,2018,1(1):15-18.
    [5]Katewa S D,Ballard J W O.Sympatric Drosophila simulans flies with distinct mtDNA show age related differences in mitochondrial metabolism Sympatric Drosophila simulans[J].Insect Biochemistry and Molecular Biology,2007,37(9):923-932.
    [6]Aw W C,Correa C C.Mitochondrial DNA variants in Drosophila melanogaster are expressed at the level of the organismal phenotype[J].Mitochondrion,2011,11(5):756-763.
    [7]Pichaud N,Ballard J W O,Tanguay R M.Mitochondrial haplotype divergences affect specific temperature sensitivity of mitochondrial respiration[J].Jornal of Bioenergetics and Biomembranes,2013,45(1-2):25-35.
    [8]Camus M F,Wolf J B W,Morrow E H,et al.Single nucleotides in the mtDNA sequence modify mitochondrial molecular function and are associated with sex-specific effects on fertility and aging mtDNA[J].Current Biology,2015,25:2717-2722.
    [9]Koch R L.The multicolored Asian lady beetle,Harmonia axyridis:a review of its biology,uses in biological control,and non-target impacts[J].Jornal of Insect Science,2003,3(1):1-16.
    [10]Roy H E,Brown P M.Ten years of invasion:Harmonia axyridis(pallas)(Coleptera:Coccinellida)in Britain[J].Ecological Entomology,2015,40(4):336-348.
    [11]郑毅,迟德富,杜波,等.不同色斑型异色瓢虫CO I和CO II基因序列系统进化分析[J].昆虫知识,2009,46(6):866-873.
    [12]郭长飞,许炜明,何瞻,等.异色瓢虫色斑多样性调查及各地十九斑变型COⅠ基因系统进化分析[J].植物保护学报,2016,43(1):155-161.
    [13]Folmer O,Black M,Hoeh W,et al.DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates[J].Molecular Marine Biology and Biotechnology,1994,3(5):294-299.
    [14]Tamura K,Peterson D,Peterson N,et al.MEGA5:molecular,evolutionary,genetics,analysis,using maximum,likelihood,evolutionary,distance,and maximum,parsimony,methods[J].Molecular Biology and Evolution,2011,28(10):2731-2739.
    [15]Thompson J D,Higgins D G,Gibson T J,et al.CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice[J].Nucleic Acids Research,1994,22:4673-4680.
    [16]Rozas J,Sanchez-Delbarrio J C,Peypoch X M,et al.DnaS.DNA polymorphism analyses by the coalescent and other methods[J].Bioinformatics,2004,19(18):2496-2497.
    [17]R Core Team.R:A Language and Environment for Statistical Computing.R Foundation for Statistical Computing,Vienna,Austria.URL,2017,https://www.R Project.org/.
    [18]Katewa S D,Ballard J W O.Sympatric Drosophila simulans flies with distinct mtDNA show difference in mitochondrial respiration and electron transport[J].Insect Biochemistry and Molecular Biology,2007,37(3):213-222.
    [19]James A C,Ballard J W O.Mitochondrial genotype affects fitness in Drosphila simulans[J].Genetics,2003,164(1):187-194.
    [20]Matsuura E T,Fukda H,Chigusa S I.Mitochondrial DNA heteroplasmy maintained in natural populations of Drosophila simulans in Reunion[J].Gentical Research,1991,57(2):123-126.
    [21]Dixon A F G.Insect Predator-Prey Dynamics:Ladybird Beetles and Biological Control[M].Cambridge University Press,2000,257.
    [22]Ingvarsson P K.Restoration of genetic variation lost-The genetic rescue hypothesis[J].Trends in Ecology and Evolution,2001,16(2):62-63.
    [23]Kaneda H,Hayashi J I,Takahama S,et al.Elimination of paternal mitochondria-DNA in intraspecific crosses during early mouse embryogenesis[J].Proceedings of the National Academy of The United States of America,1995,92(10):4542-4546.
    [24]Gemmell N J,Metcalf V J,Allendorf F W.Mother’s curse:the effect of mtDNA on individual fitness and population viability[J].Trends in Ecology and Evolution,2004,19(5):238-244.
    [25]Birkhead T R,Martinez J G,Burke T,et al.Sperm mobility determines the outcome of sperm competition in the domestic fowl[J].Proceeding of The Royal Society B-Biological Sciences,1999,266(1430):1759-1764.
    [26]Ruiz-Pesini E,Mismar D,Brand M,et al.Effects of purifying and adaptive selection on regional variation in human mtDNA[J].Science,2004,303(5655):223-226.