不同固液相组分下土壤蒽的激光诱导荧光发射光谱特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on laser induced fluorescence spectrum characteristics of anthracene in soil under different solid and liquid phases
  • 作者:黄尧 ; 赵南京 ; 孟德硕 ; 左兆陆 ; 陈宇男 ; 马明俊 ; 杨瑞芳 ; 刘建国 ; 刘文清
  • 英文作者:HUANG Yao;ZHAO Nan-jing;MENG De-shuo;ZUO Zhao-lu;CHEN Yu-nan;MA Ming-jun;YANG Rui-fang;LIU Jian-guo;LIU Wen-qing;Key Laboratory of Optics and Technology,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;University of Science and Technology of China;Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province;
  • 关键词:激光诱导荧光光谱 ; 固液组分 ; 特性 ; ; 定量
  • 英文关键词:laser-induced fluorescence spectroscopy;;soild and liquid phases;;characteristics;;anthracene;;quantify
  • 中文刊名:GDZJ
  • 英文刊名:Journal of Optoelectronics·Laser
  • 机构:中国科学院环境光学与技术重点实验室中国科学院安徽光学精密机械研究所;中国科学技术大学;安徽省环境光学监测技术重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:光电子·激光
  • 年:2019
  • 期:v.30;No.285
  • 基金:国家自然科学基金(61705238,61378041);; 安徽省科技重大专项(16030801117);; 国家重点研发计划项目(2016YFD800902-2);; 安徽光机所所长基金(AGHH201602)资助项目
  • 语种:中文;
  • 页:GDZJ201903007
  • 页数:7
  • CN:03
  • ISSN:12-1182/O4
  • 分类号:50-56
摘要
以蒽为研究对象,研究了不同土壤固、液相组分下蒽的激光诱导荧光发射光谱特性。结果显示,在266 nm激光激发下,土壤蒽在420 nm和444 nm附近分别具有荧光峰,当土壤的原生矿物和次生矿物比例发生变化时,蒽的荧光光谱峰位置未发生明显偏移,420 nm处荧光峰处强度的相对标准偏差为4.52%;土壤中腐殖质种类、浓度改变时,蒽的荧光强度随浓度增大而降低,在不同浓度的腐殖酸和富里酸的土壤中,420 nm处的荧光峰处强度的相对标准偏差分别为38.1%和27.4%,且正交实验的极差分析结果表明腐殖酸对强度影响大于富里酸;受到重金属污染后的土壤蒽的激光诱导荧光强度明显下降,但液相重金属不同浓度的土壤中,蒽在420 nm处的荧光强度差异不大,荧光峰位置未发生明显偏移.在土壤中含有不同浓度的Cd时,其相对标准偏差为1.60%,含有不同浓度的Cu时,其相对标准偏差为2.05%,含有不同浓度的Pb时,其相对标准偏差为4.54%。因此,采用荧光峰强度定标法测定时,应考虑固液组分变化导致的光谱强度差异。该研究结果为采用激光诱导荧光光谱技术对土壤蒽准确测量提供了基础数据。
        In this study,anthracene was selected as the research object,and its laser-induced fluorescence emission spectral characteristics in different solid and liquid phases of soil were studied.The results show that the fluorescence peaks for anthracene in soil are at 420 nm and 444 nm induced by a 266 nm laser.When the proportions of primary and secondary minerals in the soil changed,the fluorescence spectral peak positions of anthracene did not shift significantly,and relative standard deviation(RSD) of the fluorescence intensity of anthracene in 420 nm was 4.52%.However,when the species and concentration of humus in the soil changed,the fluorescence intensity of anthracene decreased with increasing concentration.The RSDs of fluorescence intensity of anthracene with different concentrations of humic acid and fulvic acid were 38.1% and 27.4% respectively at 420 nm.Moreover,the results of range analysis of orthogonal experiments show that the effect of humic acid was greater than that of fulvic acid.In liquid-phase heavy metals contaminated soil,the fluorescence intensity of anthracene at 420 nm decreased significantly,and showed little difference in soils with different concentrations of heavy metals in liquid phase,and the positions of the fluorescence peak did not shift significantly.When the concentration of Cd was different,the RSD was 1.60%.When the concentration of Cu was different,the RSD was 2.05%.When the concentration of Pb was different,the RSD was 4.54%.Therefore,when using the fluorescence peak intensity calibration method,the difference in spectral intensity caused by changes in the solid-liquid composition should be considered.The obtained results provid the basic research data for accurate measurement of anthracene in soil by using laser-induced fluorescence spectroscopy.
引文
[1]BI X,LUO W,GAO J,et al.Polycyclic aromatic hydrocarbons in soils from the Central-Himalaya region:Distribution,sources,and risks to humans and wildlife[J].Science of the Total Environment,2016,556:12-22.
    [2]Li G,Lang Y,Gao M,et al.Carcinogenic and mutagenic potencies for different PAHs sources in coastal sediments of Shandong Peninsula[J].Marine pollution bulletin,2014,84(1-2):418-423.
    [3]Suman S,Sinha A,Tarafdar A.Polycyclic aromatic hydrocarbons(PAHs)concentration levels,pattern,source identification and soil toxicity assessment in urban traffic soil of Dhanbad,India[J].Science of the Total Environment,2016,545:353-360.
    [4]Humel S,Schmidt S N,Sumetzberger-Hasinger M,et al.Enhanced accessibility of polycyclic aromatic hydrocarbons(PAHs)and heterocyclic PAHs in industrially contaminated soil after passive dosing of a competitive sorbate[J].Environmental Science&Technology,2017,51(14):8017-8026.
    [5]Ku■mierz M,Oleszczuk P,Kraska P,et al.Persistence of polycyclic aromatic hydrocarbons(PAHs)in biochar-amended soil[J].Chemosphere,2016,146:272-279.
    [6]WANG X T,MIAO Y,ZHANG Y,et al.Polycyclic aromatic hydrocarbons(PAHs)in urban soils of the megacity Shanghai:occurrence,source apportionment and potential human health risk[J].Science of the Total Environment,2013,447(1):80-89.
    [7]LI Min,LI Qin,ZHAO Li-na,et al.Optimizing the soil environmental protection standard system and suggestions[J].Research of Environmental Sciences,2016,29(12):1799-1810.李敏,李琴,赵丽娜,等.我国土壤环境保护标准体系优化研究与建议[J].环境科学研究,2016,29(12):1799-1810.
    [8]Wang C,Wu S,Zhou S,et al.Characteristics and source identification of polycyclic aromatic hydrocarbons(PAHs)in urban soils:a review[J].Pedosphere,2017,27(1):17-26.
    [9]Suman S,Sinha A,Tarafdar A.Polycyclic aromatic hydrocarbons(PAHs)concentration levels,pattern,source identification and soil toxicity assessment in urban traffic soil of Dhanbad,India[J].Science of the Total Environment,2016,545:353-360.
    [10]Amjadian K,Sacchi E,Mehr M R.Heavy metals(HMs)and polycyclic aromatic hydrocarbons(PAHs)in soils of different land uses in Erbil metropolis,Kurdistan Region,Iraq[J].Environmental monitoring and assessment,2016,188(11):605.
    [11]HU Guan-jiu,CHEN Su-lan,WANG Guang.Environmental monitoring methods for soil in China:situation,problems and suggestions[J].Environmental Monitoring in China,2018,34(2):10-19.胡冠九,陈素兰,王光.中国土壤环境监测方法现状、问题及建议[J].中国环境监测,2018,34(2):10-19.
    [12]WANG S T,ZHENG Y N,WANG Z F,et al.Concentration detection of polycyclic aromatic hydrocarbon combining three-dimensional fluorescence spectroscopy with HGA-RBF neural network[J].Actaphotonicasinica,2017,46(9):75-81.
    [13]YANG Ren-jie,SHANG Li-ping,BAO Zhen-bo,et al.Feasibility of using laser-induced fluorescence to detect directly polycyclic aromatic hydrocarbons in soil[J].Spectroscopy and spectral analysis,2011,31(8):2148-2150.杨仁杰,尚丽平,鲍振博,等.激光诱导荧光快速直接检测土壤中多环芳烃污染物的可行性研究[J].光谱学与光谱分析,2011,31(8):2148-2150.
    [14]HE Jun,SHANG Li-ping,DENG Hu,et al.Detection system of 250 nm laser induced fluorescence of polycyclic aromatic hydrocarbons in soil[J].Opto-electronic engineering,2014,41(9):51-55.何俊,尚丽平,邓琥,等.250 nm激光诱导土壤中多环芳烃的荧光检测系统[J].光电工程,2014,41(9):51-55.
    [15]Okparanma R N,Mouazen A M.Determination of total petroleum hydrocarbon(TPH)and polycyclic aromatic hydrocarbon(PAH)in soils:a review of spectroscopic and nonspectroscopic techniques[J].Applied Spectroscopy Reviews,2013,48(6):458-486.
    [16]Lee C K,Ko E J,Kim K W,et al.Partial least square regression method for the detection of polycyclic aromatic hydrocarbons in the soil environment using laser-induced fluorescence spectroscopy[J].Water,air,and soil pollution,2004,158(1):261-275.
    [17]KO E J,LEE C K,KIm Y J,et al.Monitoring pah-contaminated soil using laser-induced fluorescence(LIF)[J].Environmental technology,2003,24(9):1157-1164.
    [18]YANG Ren-jie,SUN Xue-shan,WANG Bin,et al.Effect of soil moisture content on the fluorescence characteristics of polycyclic aromatic hydrocarbons[J].Spectroscopy and spectral analysis,2017,37(4):1152-1156.杨仁杰,孙雪杉,王斌,等.土壤湿度对多环芳烃荧光特性的影响[J].光谱学与光谱分析,2017,37(4):1152-1156.
    [19]Ko E J,Kwak J,Kim J Y,et al.Application of laser based spectroscopic monitoring into soil remediation process of PAH-contaminated soil[J].Geosystem Engineering,2011,14(1):15-22.
    [20]戴树桂.环境化学[M].北京:高等教育出版社,2006:267-269.