湿化学方法掺杂Na对多晶SnS热电性能的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adjusting Na doping via wet-chemical synthesis to enhance thermoelectric properties of polycrystalline SnS
  • 作者:唐怀超 ; 董金峰 ; 孙富华 ; Asfandiyar ; 尚鹏鹏 ; 李敬锋
  • 英文作者:Huaichao Tang;Jin-Feng Dong;Fu-Hua Sun;Asfandiyar;Pengpeng Shang;Jing-Feng Li;State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University;College of Chemistry and Materials Science, Shandong Agricultural University;
  • 英文关键词:SnS;;rapid preparation;;Na doping;;thermoelectric
  • 中文刊名:SCMA
  • 英文刊名:中国科学:材料科学(英文版)
  • 机构:State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University;College of Chemistry and Materials Science, Shandong Agricultural University;
  • 出版日期:2019-01-29 11:42
  • 出版单位:Science China Materials
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Key R&D Program of China (2018YFB0703603);; the Basic Science Center Project of National Natural Science Foundation of China (NSFC, 51788104);; the NSFC (11474176)
  • 语种:英文;
  • 页:SCMA201907010
  • 页数:8
  • CN:07
  • ISSN:10-1236/TB
  • 分类号:99-106
摘要
SnS作为一种与SnSe特征结构相似且元素丰度更高的热电材料,受到越来越多的关注,但是其较低的本征载流子浓度限制了热电性能的提升.本工作利用了一种改进的化学共沉淀方法调节基体中Na~+含量来提高载流子浓度,进而提升了多晶SnS的热电性能.最大功率因子在873 K达到362μW m~(-1)K~(-2),高于目前关于多晶SnS的最高报道值.得益于提升的电输运性能以及较低的热导率, ZT值在873 K达到0.52.该工作为其他热电化合物的掺杂改性技术提供了新思路.
        Tin sulfide(SnS) has analogous structural features to tin selenide(SnSe), but contains more abundant resources as compared with SnSe. SnS has elicited attention as a potential eco-friendly thermoelectric(TE) material. However,the intrinsic carrier concentration of SnS is very low, thereby hindering the performance improvement of the material. This study proposes that the TE properties of polycrystalline Nadoped SnS(synthesized through an improved chemical coprecipitation) can be significantly enhanced. The maximum power factor(PF) of 362 μW m~(-1) K-2 at 873 K was achieved,presenting a state-of-the-art value for the polycrystalline SnS.Considering the merits of the improved electrical properties and lower thermal conductivity of SnS, the highest ZT was up to 0.52 at 873 K even without intentional chemical doping.This study offers an effective approach for improving the PF to achieve high ZT in SnS. Hence, we expect that this new perspective can be extended to other dopants and broaden the scope of synthesis technology.
引文
1 Bonaccorso F,Colombo L,Yu G,et al.Graphene,related twodimensional crystals,and hybrid systems for energy conversion and storage.Science,2015,347:1246501
    2 Zhao LD,Lo SH,Zhang Y,et al.Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals.Nature,2014,508:373-377
    3 Duong AT,Nguyen VQ,Duvjir G,et al.Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals.Nat Commun,2016,7:13713
    4 Wan C,Gu X,Dang F,et al.Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2.Nat Mater,2015,14:622-627
    5 Zhang K,Davis M,Qiu J,et al.Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites.Nanotechnology,2012,23:385701
    6 Juang ZY,Tseng CC,Shi Y,et al.Graphene-Au nanoparticle based vertical heterostructures:A novel route towards high-ZT thermoelectric devices.Nano Energy,2017,38:385-391
    7 Deng Z,Han D,Liu Y.Colloidal synthesis of metastable zincblende IV-VI SnS nanocrystals with tunable sizes.Nanoscale,2011,3:4346-4351
    8 Ge ZH,Zhang BP,Chen YX,et al.Synthesis and transport property of Cu1.8S as a promising thermoelectric compound.Chem Commun,2011,47:12697-12699
    9 Fan DD,Liu HJ,Cheng L,et al.MoS2nanoribbons as promising thermoelectric materials.Appl Phys Lett,2014,105:133113
    10 Lin Y,Norman C,Srivastava D,et al.Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene.ACS Appl Mater Interfaces,2015,7:15898-15908
    11 Lou XW,Yuan C,Archer LA.Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls:cavity size tuning and functionalization.Small,2007,3:261-265
    12 Dey A,Bajpai OP,Sikder AK,et al.Recent advances in CNT/graphene based thermoelectric polymer nanocomposite:A proficient move towards waste energy harvesting.Renew Sustain Energy Rev,2016,53:653-671
    13 Slack GA.Design concepts for improved thermoelectric materials.MRS Online Proceedings Library Archive.1997,478
    14 Tritt TM.Holey and unholey semiconductors.Science,1999,283:804-805
    15 Min G,Rowe DM.A serious limitation to the phonon glass electron crystal(PGEC)approach to improved thermoelectric materials.J Mater Sci Lett,1999,18:1305-1306
    16 Li J,Zhang X,Chen Z,et al.Low-symmetry rhombohedral GeTe thermoelectrics.Joule,2018,2:976-987
    17 Tang Y,Gibbs ZM,Agapito LA,et al.Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3skutterudites.Nat Mater,2015,14:1223-1228
    18 Chen Z,Ge B,Li W,et al.Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics.Nat Commun,2017,8:13828
    19 Chen Z,Zhang X,Lin S,et al.Rationalizing phonon dispersion for lattice thermal conductivity of solids.Natl Sci Rev,2018,5:888-894
    20 Hong M,Chen ZG,Yang L,et al.BixSb2-xTe3nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings.Nano Energy,2016,20:144-155
    21 Poudel B,Hao Q,Ma Y,et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.Science,2008,320:634-638
    22 Dong J,Liu W,Li H,et al.In situ synthesis and thermoelectric properties of PbTe-graphene nanocomposites by utilizing a facile and novel wet chemical method.J Mater Chem A,2013,1:12503
    23 Jiang G,He J,Zhu T,et al.High performance Mg2(Si,Sn)solid solutions:a point defect chemistry approach to enhancing thermoelectric properties.Adv Funct Mater,2014,24:3776-3781
    24 Jiang B,Qiu P,Chen H,et al.An argyrodite-type Ag9GaSe6liquidlike material with ultralow thermal conductivity and high thermoelectric performance.Chem Commun,2017,53:11658-11661
    25 Li F,Li JF,Zhao LD,et al.Polycrystalline BiCuSeO oxide as a potential thermoelectric material.Energy Environ Sci,2012,5:7188
    26 Wu H,Lu X,Wang G,et al.Sodium-doped tin sulfide single crystal:A nontoxic earth-abundant material with high thermoelectric performance.Adv Energy Mater,2018,8:1800087
    27 Sun FH,Dong J,Dey S,et al.Enhanced thermoelectric performance of Cu12Sb4S13-δtetrahedrite via nickel doping.Sci China Mater,2018,61:1209-1217
    28 He W,Wang D,Dong JF,et al.Remarkable electron and phonon band structures lead to a high thermoelectric performance ZT>1 in earth-abundant and eco-friendly SnS crystals.J Mater Chem A,2018,6:10048-10056
    29 Zhou B,Li S,Li W,et al.Thermoelectric properties of SnS with Na-doping.ACS Appl Mater Interfaces,2017,9:34033-34041
    30 Tang H,Sun FH,Dong JF,et al.Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability.Nano Energy,2018,49:267-273
    31 Wan C,Wang Y,Wang N,et al.Low-thermal-conductivity(MS)1+x(TiS2)2(M=Pb,Bi,Sn)misfit layer compounds for bulk thermoelectric materials.Materials,2010,3:2606-2617
    32 Wei TR,Qin Y,Deng T,et al.Copper chalcogenide thermoelectric materials.Sci China Mater,2019,62:8-24
    33 Tan Q,Zhao LD,Li JF,et al.Thermoelectrics with earth abundant elements:low thermal conductivity and high thermopower in doped SnS.J Mater Chem A,2014,2:17302-17306
    34 Tan Q,Li JF.Thermoelectric properties of Sn-S bulk materials prepared by mechanical alloying and spark plasma sintering.J Elec Materi,2014,43:2435-2439
    35 Peng K,Lu X,Zhan H,et al.Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals.Energy Environ Sci,2016,9:454-460
    36 Wang C,Chen Y,Jiang J,et al.Improved thermoelectric properties of SnS synthesized by chemical precipitation.RSC Adv,2017,7:16795-16800
    37 Sun BZ,Ma Z,He C,et al.Anisotropic thermoelectric properties of layered compounds in SnX2(X=S,Se):a promising thermoelectric material.Phys Chem Chem Phys,2015,17:29844-29853
    38 Zhang Q,Chere EK,Sun J,et al.Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSxby iodine doping.Adv Energy Mater,2015,5:1500360
    39 Herron SM,Tanskanen JT,Roelofs KE,et al.Highly textured tin(II)sulfide thin films formed from sheetlike nanocrystal inks.Chem Mater,2014,26:7106-7113
    40 Cahill DG,Watson SK,Pohl RO.Lower limit to the thermal conductivity of disordered crystals.Phys Rev B,1992,46:6131-6140
    41 Ding G,Gao G,Yao K.High-efficient thermoelectric materials:The case of orthorhombic IV-VI compounds.Sci Rep,2015,5:9567