内蒙古荒漠草原植物遗传多样性对模拟增温处理的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The response of genetic diversity in desert steppe plants to simulated warming in Inner Mongolia,China
  • 作者:曹路 ; 李春瑞 ; 田青松 ; 杜建材 ; 王忠武 ; 韩冰
  • 英文作者:CAO Lu;LI Chunrui;TIAN Qingsong;DU Jiancai;WANG Zhongwu;HAN Bing;Institute of Grassland Research,Chinese Academy of Agricultural Sciences;College of Life Science,Inner Mongolia Agricultural University;College of Ecology and Environmental Science,Inner Mongolia Agricultural University;
  • 关键词:木地肤 ; 短花针茅 ; 细叶葱 ; 猪毛菜 ; 遗传多样性 ; 扩增片段长度多态性(AFLP) ; 模拟增温
  • 英文关键词:Kochia prostrata;;Stipa breviflora;;Allium tenuissimum;;Salsola collina;;genetic diversity;;AFLP;;simulated warming
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国农业科学院草原研究所;内蒙古农业大学生命科学学院;内蒙古农业大学生态与环境学院;
  • 出版日期:2016-03-03 10:48
  • 出版单位:生态学报
  • 年:2016
  • 期:v.36
  • 基金:内蒙古自治区自然科学基金资助项目(2015MS0305);; 中国科学院西部之光“人才培养”项目;; 中国农业科学院草原研究所科技创新工程资助项目
  • 语种:中文;
  • 页:STXB201621024
  • 页数:10
  • CN:21
  • ISSN:11-2031/Q
  • 分类号:228-237
摘要
为探究全球变暖对温带荒漠草原地上种群的遗传影响,对已经接受模拟增温处理6年的短花针茅草原4种不同生活型植物,即半灌木、多年生禾草、多年生杂类草和一年生植物,应用AFLP分子标记方法研究了其遗传多样性和遗传结构。结果显示,对照处理与增温处理下的木地肤、短花针茅、细叶葱、猪毛菜4种植物的多态位点百分率(PPB)分别为11.32%,11.32%;40.83%,39.91%;14.29%,13.10%;19.85%,19.12%。Nei's基因多样性指数(He)分别为0.0274,0.0259;0.0812,0.0899;0.0131,0.0084;0.0506,0.0456。Shannon's信息指数值(I)分别为0.0447,0.0430;0.1354,0.1466;0.0267,0.0182;0.0811,0.0733。分子方差分析(AMOVA)显示4种植物的变异主要来源于实验处理内部,木地肤为85.03%,短花针茅为66.35%,细叶葱为70.00%,猪毛菜为66.52%;增温处理间的变异分别占-2.81%,-5.47%,-3.60%,2.53%(P>0.05)。4种植物增温处理与变异程度之间在统计学上并无相关性。研究表明虽然短时间的模拟增温并不足以使4种生活型植物种群遗传多样性和遗传结构发生显著变化,但相对于3种多年生植物,一年生植物猪毛菜更容易受到增温影响。多年生和一年生植物对增温具有不同的遗传响应。
        Climate is the most important factor that determines vegetation types and the distribution of species,and,accordingly,these features are two of the most prominent indicators of climate change. Currently,scientists generally agree that climate change will inevitably lead to changes in plant community structure and function,and if this change continues,the effects will be profound and enduring. Existing research shows that simulated warming causes an increase in biomass in Deschampsia caespitosa,Carex alrofusca,and Leymus chinensis; as climates change,these constructive species and their main companion species within a Kobresia humilis meadow have experienced an advancement in their spring phenology and a delay in their autumn phenophase. In addition,the photosynthetic rate of Deschampsia caespitosa in a Northwest Sichuan alpine meadow has increased. Although the change in stomatal conductance was irregular,a significant decrease has alsobeen observed in the sodium,potassium,and phosphorus content of leaves. However,relatively little research has been conducted on the effects of simulated warming on the genetic structure and diversity of plant populations. Against the background of global climate change,the temperatures of the Inner Mongolian desert steppe have become unevenly elevated,with average annual temperatures increasing from 8. 1℃ in the 1950 s to 9. 0℃ in the 1990 s. The present study explores the effects of global warming on the genetics of wild forage plant populations with different life forms in desert steppe habitat,in an effort to elucidate their potential to adapt to environmental change. The study site was located in the desert steppe in Siziwangqi territory of Inner Mongolia. Suspension infrared radiators were used to create a controlled warming experiment under otherwise natural field conditions. Warming began on May 3,2006. The average soil temperature at depths of 0,7.5,15,30,and 50 cm increased by 1.32,0.92,0.88,0.80,and 0.74℃,respectively,after warming for1 year compared with the average in plots not exposed to warming. For this study,changes in genetic diversity and structure were analyzed in four plant populations:( 1) small half shrubs,represented by Kochia prostrata;( 2) perennial grasses,represented by Stipa breviflora;( 3) perennial forbs,represented by Allium tenuissimum; and( 4) annuals and biennials,represented by Salsola collina). The study was conducted under simulated warming pressure and genetic analysis was performed using amplified fragment length polymorphism. The percentages of polymorphic loci in K. prostrata,S. breviflora,A. tenuissimum,and S. collina under non-warming were 11.32%,40.83%,14.29%,and 19.85%,whereas those under simulated warming were 11. 32%,39. 91%,13. 10%,and 19. 12%,respectively. The genetic diversity of the four populations measured under control and simulated warming,measured by the Shannon's information index,were as follows:K. prostrata( 0.0274,0.0259),S. breviflora( 0.0812,0.0899),Allium tenuissimum( 0.0131,0.0084),and S. collina( 0.0506,0.0456). These findings exhibited the same distributional pattern as that of Nei' s genetic diversity index for K. prostrata( 0.0447,0.0430),S. breviflora( 0.1354,0.1466),Allium tenuissimum( 0.0267,0.0182),and S. collina( 0.0811,0.0733). Cluster analysis of these four species showed that known of the species reacted significantly to the warming process,and that inter-individual clusters were not significantly different. The results of an analysis of molecular variance( AMOVA) indicated that the main source of variation among the four life form populations was within-population variation: K. prostrata( 85.03%),S. breviflora( 66.35%),A. tenuissimum( 70. 00%),and S. collina( 66. 52%). The among-groups variation was not significant and accounted for the following percentages of variation: K. prostrata(-2.81%),S. breviflora(-5.47%),Allium tenuissimum(-3.60%),and S. collina( 2.53%). No statistically significant correlation was found between simulated warming and genetic differentiation. This study shows that a short period of simulated warming was not sufficient to create a significant change in genetic diversity and structure for the four life form populations studied here; however,compared with the three types of perennials studied,the annual plant S. collina,is more susceptible to the effects of warming. Perennials and annuals have different genetic responses to warming. This study provides experimental evidence that can reveal the potential adaptation of plants to environmental change for different life forms of wild forage plants of the desert steppe,and will help researchers to predict forage yield and changes in forage quality.
引文
[1]Dwire K A,Kauffman J B,Brookshire E N J,Baham J E.Plant biomass and species composition along an environmental gradient in montane riparian meadows.Oecologia,2004,139(2):309-317.
    [2]Alemayehu F R,Frenck G,van der Linden L,Mikkelsen T N,J?rgensen R B.Can barley(Hordeum vulgare L.s.l.)adapt to fast climate changes?A controlled selection experiment.Genetic Resources and Crop Evolution,2014,61(1):151-161.
    [3]李娜,王根绪,杨燕,高永恒,柳林安,刘光生.短期增温对青藏高原高寒草甸植物群落结构和生物量的影响.生态学报,2011,31(4):895-905.
    [4]黄文华,王树彦,韩冰,焦志军,韩国栋.草地生态系统对模拟大气增温的响应.草业科学,2014,31(11):2069-2076.
    [5]李英年,赵亮,赵新全,周华坤.5年模拟增温后矮嵩草草甸群落结构及生产量的变化.草地学报,2004,12(3):236-239.
    [6]田云录,郑建初,张彬,陈金,董文军,杨飞,张卫建.麦田开放式昼夜不同增温系统的设计及增温效果.中国农业科学,2010,43(18):3724-3731.
    [7]贺刚,周辉,廖衡斌,刘喜庆.烤烟漂浮育苗中增温对烟苗的影响.作物研究,2014,28(7):798-800.
    [8]丁一汇,任国玉,石广玉,宫鹏,郑循华,翟盘茂,张德二,赵宗慈,王绍武,王会军,罗勇,陈德亮,高学杰,戴晓苏.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势.气候变化研究进展,2006,2(1):3-8.
    [9]马瑞芳.内蒙古草原区近50年气候变化及其对草地生产力的影响[D].北京:中国农业科学院研究生院,2007.
    [10]Shaver G R,Johnson L C,Cades D H,Murray G,Laundre J A,Rastetter E B,Nadelhoffer K J,Giblin A E.Biomass and CO2flux in wet sedge tundra:responses to nutrients,temperature,and light.Ecological Monographs,1998,68(1):75-97.
    [11]珊丹,韩国栋,赵萌莉,王珍,韩雄,高福光.控制性增温和施氮对荒漠草原土壤呼吸的影响.干旱区资源与环境,2009,23(9):106-112.
    [12]张宇,红梅.内蒙古荒漠草原土壤呼吸对模拟增温和氮素添加的响应.草地学报,2014,22(6):1227-1231.
    [13]王晨晨,王珍,张新杰,李寅龙,刘军利,韩国栋.增温对荒漠草原植物群落组成及物种多样性的影响.生态环境学报,2014,23(1):43-49.
    [14]李元恒,韩国栋,王珍,王正文,赵萌莉,王萨仁娜.增温和氮素添加降低荒漠草原多年生植物氮素回收效率.生态学报,2015,35(18):.(未出版刊物)
    [15]李荣华,夏岩石,刘顺枝,孙莉丽,郭培国,缪绅裕,陈健辉.改进的CTAB提取植物DNA方法.实验室研究与探索,2009,28(9):14-16.
    [16]Vos P,Hogers R,Bleeker M,Reijans,M,van de Lee T,Hornes M,Frijters A,Pot J,Peleman J,Kuiper M,Zabeau M.AFLP:a new technique for DNA fingerprinting.Nucleic Acids Research,1995,23(21):4407-4414.
    [17]Yeh F C,Yang R C,Boyle T B J.POPGENE version 1.31.Microsoft Windows-based freeware for population genetic analysis.Edmonton:University of Alberta,1997.
    [18]Rohlf F J.NTSYS-PC:Numerical Taxonomy and Multivariate Analysis System,Version 2.1.New York:Exeter Software,Setauket,2000.
    [19]Excoffier L,Smouse P E,Quattro J M.Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data.Genetics,1992,131(2):479-491.
    [20]Shen K P,Harte J.Ecosystem climate manipulations//Methods in Ecosystem Science.New York:Springer-Verlag,2000:353-369.
    [21]牛书丽,韩兴国,马克平,万师强.全球变暖与陆地生态系统研究中的野外增温装置.植物生态学报,2007,31(2):262-271.
    [22]李娜,杨鹰,万洁,韦雷飞,钟金城,武志娟,姜雪鸥,张利亚.攀西黑山羊群体的AFLP遗传多样性研究.家畜生态学报,2013,34(2):22-26.
    [23]赵冰,徐曼,司国臣,李厚华,张延龙.秦岭秀雅杜鹃野生种群遗传多样性和遗传分化的AFLP分析.应用生态学报,2012,23(11):2983-2990.
    [24]张庆,牛建明,董建军.内蒙古地区短花针茅(Stipa breviflora)种群遗传多样性.生态学报,2008,28(7):3447-3455.
    [25]珊丹,赵萌莉,韩冰,韩国栋.不同放牧压力下大针茅种群的遗传多样性.生态学报,2006,26(10):3175-3183.
    [26]王金龙,高玉葆,赵念席,刘景玲,林枫,宋涛.内蒙古中东部草原区克氏针茅形态特征和RAPD遗传分化的相关性研究.植物研究,2006,26(6):708-714.
    [27]赵新全,陈世龙,曹广民,师生波,徐世晓,王启兰.研究方向:青藏高原高寒草甸生态系统与全球气候变化的相互作用机理研究.科技和产业,2003,3(8):51-59.
    [28]张丽.我国中华白蛉的鉴别和分子群体遗传结构研究[D].上海:第二军医大学,2010.
    [29]康萨如拉,牛建明,张庆,陈丽萍.短花针茅叶片解剖结构及与气候因子的关系.草业学报,2013,22(1):77-86.
    [30]高松,苏培玺,严巧娣,丁松爽,张岭梅.C4荒漠植物猪毛菜与木本猪毛菜的叶片解剖结构及光合生理特征.植物生态学报,2009,33(2):347-354.
    [31]刘涛,李柱,安沙舟,许帼英.干旱胁迫对木地肤幼苗生理生化特性的影响.干旱区研究,2008,25(2):231-235.
    [32]栗利元,张未芳,郑联寿.细叶韭生活习性的研究.黑龙江农业科学,2011,(2):63-65.
    [33]常兆丰,王强强,韩福贵,仲生年.民勤荒漠区不同生活型植物物候响应气候变暖的差异.生态学杂志,2011,30(9):1921-1929.
    [34]杨健.增温和氮沉降对加拿大一枝黄花入侵性的影响[D].成都:成都理工大学,2014.
    [35]王迪,傅彬英,张立军.植物表观遗传变化与环境压力研究进展.分子植物育种,2008,6(3):569-573.
    [36]Bender J.Plant epigenetics.Current Biology,2002,12(12):R412-R414.
    [37]Bird A.Perceptions of epigenetics.Nature,2007,447(7143):396-398.
    [38]Linhart Y B,Grant M C.Evolutionary significance of local genetic differentiation in plants.Annual Review of Ecology and Systematics,1996,27:237-277.
    [39]Klanderud K.Climate change effects on species interactions in an alpine plant community.Journal of Ecology,2005,93(1):127-137.
    [40]Klein J A,Harte J,Zhao X Q.Experimental warming causes large and rapid species loss,dampened by simulated grazing,on the Tibetan Plateau.Ecology Letters,2004,7(12):1170-1179.
    [41]Harte J,Shaw R.Shifting dominance within a montane vegetation community:results of a climate-warming experiment.Science,1995,267(5199):876-880.
    [42]Tilman D,Knops J,Wedin D,Reich P,Ritchie M,Siemann E.The influence of functional diversity and composition on ecosystem processes.Science,1997,277(5330):1300-1302.
    [43]Zhou G S,Wang Y H,Zhang X S.Advance in the responses of vegetation/ecosystems in China to global change.Bulletin of the Chinese Academy of Sciences,1999,13(3):158-165.
    [44]Aerts R,Cornelissen J H C,Dorrepaal E.Plant performance in a warmer world:general responses of plants from cold,northern biomes and the importance of winter and spring events.Plant Ecology,2006,182(1/2):65-77.
    [45]Morgan J A,LeC ain D R,Pendall E,Blumenthal D M,Kimball B A,Carrillo Y,Williams D G,Heisler-White J,Dijkstra F A,West M.C4grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland.Nature,2011,476(7359):202-205.
    [46]Yin H J,Lai T,Cheng X Y,Jiang X M,Liu Q.Warming effect on growth and physiology of seedlings of Betula albo-sinensis and Abies faxoniana under two contrasting light conditions in subalpine coniferous forests of western Sichuan,China.Frontiers of Forestry in China,2009,4(4):432-442.