两种草本植物根系对土壤可蚀性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Root System of Two Herbs on Soil Erodibility
  • 作者:秦嘉惠 ; 程谅 ; 曹丹妮 ; 郭忠录
  • 英文作者:QIN Jiahui;CHENG Liang;CAO Danni;GUO Zhonglu;Research Center of Soil and Water Conservation, Huazhong Agricultural University;
  • 关键词:草本植物 ; 黄棕壤 ; 土壤可蚀性 ; 土壤性质 ; 根系特性
  • 英文关键词:herb plants;;yellow brown soil;;soil erodibility;;soil properties;;root characteristics
  • 中文刊名:STBY
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:华中农业大学水土保持研究中心;
  • 出版日期:2019-03-29
  • 出版单位:水土保持研究
  • 年:2019
  • 期:v.26;No.133
  • 基金:国家自然科学基金“侵蚀环境下植物群落根系对坡面水蚀”(41671273)
  • 语种:中文;
  • 页:STBY201902010
  • 页数:7
  • CN:02
  • ISSN:61-1272/P
  • 分类号:59-65
摘要
为揭示草本植物根系对土壤抗侵蚀能力的影响,选取白三叶(Trifolium repens L.)、黑麦草(Loliu perenne L.)及两者混播根系为研究对象,通过冲刷试验,研究了3种种植类型的根系特征及对土壤可蚀性影响。结果表明:(1)白三叶、黑麦草及混播草的根长密度(RLD)、根面积比(RAR)及根重密度(RMD)由春季到秋季呈现先升高后降低最后趋于稳定的变化趋势。(2)试验期内,土壤可蚀性大小顺序为白三叶<黑麦草<混播草<裸地。3种种植类型的土壤可蚀性与土壤容重、水稳性团聚体、RLD、RAR及RMD呈指数函数形式下降(R~2>0.70)。(3)土壤可蚀性与0~1.0 mm径级根系极显著正相关(p<0.01),与1.0~2.0 mm,0~2.0 mm显著正相关(p<0.05)。
        In order to explore the effect of herbaceous roots on anti-erodibility, three treatments(i. e. sole Trifolium repens L., sole Loliu perenne L. and mixed sowing of Trifolium repens L. and Loliu perenne L.) were employed. The root characteristics of the three planting types were measured, of which effects on soil erodibility were compared. Soil detachment capacity by concentrated flow was measured in a hydraulic flume with the fixed bed under five different flow shear stresses to determine soil erodibility. The results showed that:(1) the root length density(RLD), root area ratio(RAR) and root weight density(RMD) of Trifolium repens, perennial ryegrass and mixed sowing of grass first increased from spring to autumn, then decreased and finally stabilized;(2) the soil erodibility increased in the order: Trifolium repens0.70);(3) soil erodibility was significantly and positively correlated with 0~1.0 mm root diameter(p<0.01), and positively correlated with 1.0~2.0 mm, 0~2.0 mm root diameter(p<0.05).
引文
[1]朱冰冰,李占斌,李鹏,等.土地退化/恢复中土壤可蚀性动态变化[J].农业工程学报,2009,25(2):56-61.
    [2]Knapen A, Poesen J, Govers G, et al. Resistance of soils to concentrated flow erosion: a review[J]. Earth Science Reviews, 2007,80(1):75-109.
    [3]Zhang G, Tang K, Sun Z, et al. Temporal variability in rill erodibility for two types of grasslands[J]. Soil Research, 2014,52(8):781-788.
    [4]翟子宁,苏备.土壤可蚀性研究进展[J].土壤通报,2016,47(1):253-256.
    [5]雷廷武,李法虎.水土保持学[M].北京:中国农业大学出版社,2012.
    [6]邬铃莉,杨文涛,王云琦,等.基于WEPP模型的水土保持措施因子与侵蚀量关系研究[J].土壤通报,2017,48(4):955-960.
    [7]王长燕,郁耀闯.黄土丘陵区不同草被类型土壤细沟可蚀性季节变化研究[J].农业机械学报,2016,47(8):101-108.
    [8]徐燕,龙健.贵州喀斯特山区土壤物理性质对土壤侵蚀的影响[J].水土保持学报,2005,19(1):157-159.
    [9]Ghebreiyessus Y T, Gantzer C J, Alberts E E, et al. Soil erosion by concentrated flow: shear stress and bulk density[J]. Transactions of the Asae, 1994,37(6):1791-1797.
    [10]杨帆,张洪江,程金花,等.北京市延庆县不同土地利用方式下的土壤可蚀性研究[J].水土保持通报,2013,33(6):19-23.
    [11]Wang B, Zhang G H, Shi Y Y, et al. Effects of near soil surface characteristics on the soil detachment process in a chronological series of vegetation restoration[J]. Soilence Society of America Journal, 2015,79(4):1213-1222.
    [12]张科利,蔡永明,刘宝元,等.土壤可蚀性动态变化规律研究[J].地理学报,2001,56(6):673-681.
    [13]杨帆,程金花,张洪江,等.坡面草本植物对土壤分离及侵蚀动力的影响研究[J].农业机械学报,2016(5):129-137.
    [14]Li Z W, Zhang G H, Geng R, et al. Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China[J]. Biosystems Engineering, 2015,129:248-257.
    [15]Zhang G H, Tang K, Ren Z, et al. Impact of grass root mass density on soil detachment capacity by concentrated flow on steep slopes[J]. Transactions of the Asabe, 2013,56(3):927-934.
    [16]Baets S D, Poesen J, Gyssels G, et al. Effects of grass roots on the erodibility of topsoils during concentrated flow[J]. Geomorphology, 2006,76(1/2):54-67.
    [17]葛芳红,周正朝,刘俊娥,等.黄土丘陵区4种典型植物根系分布特征及对土壤分离速率的影响[J].水土保持学报,2017,31(6):164-169.
    [18]陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242-253.
    [19]唐科明.草地土壤细沟可蚀性季节变化研究[J].安徽农业科学,2015,43(25):71-73.
    [20]张光辉.冲刷时间对土壤分离速率定量影响的试验模拟[J].水土保持学报,2002,16(2):1-4.
    [21]Zhang G, Liu B, Liu G, et al. Detachment of undisturbed soil by shallow flow[J]. Soil Science Society of America Journal, 2003,67(3):713-719.
    [22]Nearing M A. A process-based soil erosion model for USDA-water erosion prediction project technology [J]. Trans. Asae, 1989,32(5):1587-1593.
    [23]王计磊,吴发启.不同生长期大豆坡耕地土壤抗侵蚀能力特征[J].土壤学报,2016,53(6):1389-1398.
    [24]刘子壮,高照良,杜峰,等.黄土高原高速公路护坡植物根系分布及力学特性研究[J].水土保持学报,2014,28(4):66-71.
    [25]袁雪红,高照良,张翔,等.护坡植物根系分布及抗拉力学特性[J].南水北调与水利科技,2016,14(5):117-123.
    [26]沈慧,姜凤岐,杜晓军,等.水土保持林土壤抗蚀性能评价研究[J].应用生态学报,2000,11(3):345-348.
    [27]刘月梅,张兴昌,王丹丹.黄土性土壤固化对黑麦草生长和根系活力的影响[J].应用生态学报,2011,22(10):2604-2608.
    [28]王润泽,谌芸,李铁,等.香根草和马唐的根系特征及对坡地紫色土抗侵蚀性的影响[J].草业学报,2017,26(7):45-54.
    [29]Bernard Barthès, Eric Roose. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena, 2002,47(2):133-149.
    [30]刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):34-37.
    [31]熊燕梅,夏汉平,李志安,等.植物根系固坡抗蚀的效应与机理研究进展[J].应用生态学报,2007,18(4):895-904.