激光超衍射加工机理与研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The mechanisms and research progress of laser fabrication technologies beyond diffraction limit
  • 作者:张心正 ; 夏峰 ; 许京军
  • 英文作者:Zhang Xin-Zheng;Xia Feng;Xu Jing-Jun;The MOE Key Laboratory of Weak-Light Nonlinear Photonics,TEDA Institute of Applied Physics,School of Physics,Nankai University;College of Physics Science,Qingdao University;
  • 关键词:超衍射极限 ; 激光微纳加工 ; 激光直写 ; 激光近场加工
  • 英文关键词:beyond diffraction limit;;laser micro/nano-fabrication;;laser direct writing;;laser near-field fabrication
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:南开大学物理科学学院泰达应用物理研究院弱光非线性光子学教育部重点实验室;青岛大学物理科学学院;
  • 出版日期:2017-07-07 17:15
  • 出版单位:物理学报
  • 年:2017
  • 期:v.66
  • 基金:国家重点基础研究发展计划(批准号:2013CB328702);; 国家自然科学基金(批准号:11674182);; 天津市自然科学基金(批准号:17JCYBJC16700);; 111计划(批准号:B07013);; 教育部长江学者和创新团队发展计划(批准号:IRT_13R29);; 山西大学极端光学协同创新中心资助的课题~~
  • 语种:中文;
  • 页:WLXB201714007
  • 页数:16
  • CN:14
  • ISSN:11-1958/O4
  • 分类号:104-119
摘要
随着纳米科技和微纳电子器件的发展,制造业对微纳加工技术的要求越来越高.激光加工技术是一种绿色先进制造技术,具有巨大的发展潜力,己广泛应用于不同的制造领域.为实现低成本、高效率、大面积尤其是高精度的激光微纳加工制造,研究和发展激光超衍射加工技术具有十分重要的科学意义和应用价值.本文首先阐述了基于非线性效应的远场激光直写超衍射加工技术的原理与国内外发展状况,包括激光烧蚀加工技术、激光诱导改性加工技术和多光子光聚合加工技术等;然后介绍了几种基于倏逝波的近场激光超衍射加工技术,包括扫描近场光刻技术、表面等离子激元光刻技术等新型超衍射激光近场光刻技术的机理与研究进展;最后对激光超衍射加工中存在的问题及未来发展方向进行了讨论.
        Laser is recognized as one of the top technological achievements of 20 th century and plays an important role in many fields,such as medicine,industry,entertainment and so on.Laser processing technology is one of the earliest and most developed applications of laser.With the rapid development of nanoscience and nanotechnology and micro/nano electronic devices,the micro/nanofabrication technologies become increasingly demanding in manufacturing industries.In order to realize low-cost,large-area and especially high-precision micro-nanofabrication,it has great scientific significance and application value to study and develop the laser fabrication technologies that can break the diffraction limit.In this article,the super resolution laser fabrication technologies are classified into two groups,far-filed laser direct writing technologies and near-field laser fabrication technologies.Firstly,the mechanisms and progress of several far-field laser direct writing technologies beyond the diffraction limit are summarized,which are attributed to the lasermatter nonlinear interaction.The super-diffraction laser ablation was achieved for the temperature-dependent reaction of materials with the Gaussian distribution laser,and the super-diffraction laser-induced oxidation in Metal-Transparent Metallic Oxide grayscale photomasks was realized by the laser-induced Cabrera-Mott oxidation process.Besides,the multi-photon polymerization techniques including degenerate/non-degenerate two-photon polymerization are introduced and the resolution beyond the diffraction limit was achieved based on the third-order nonlinear optical process.Moreover,the latest stimulated emission depletion technique used in the laser super-resolution fabrication is also introduced.Secondly,the mechanisms and recent advances of novel super diffraction near-field laser fabrication technologies based on the evanescent waves or surface plasmon polaritons are recommended.Scanning near-field lithography used a near-field scanning optical microscope coupled with a laser to create nanoscale structures with a resolution beyond 100 nm.Besides,near-field optical lithography beyond the diffraction limit could also be achieved through super resolution near-field structures,such as a bow-tie nanostructure.The interference by the surface plasmon polariton waves could lead to the fabrication of super diffraction interference fringe structures with a period smaller than 100 nm.Moreover,a femtosecond laser beam could also excite and interfere with surface plasmon polaritons to form laser-induced periodic surface structures.Furthermore,the super-resolution superlens and hyperlens imaging lithography are introduced.Evanescent waves could be amplified by using the superlens of metal film to improve the optical lithography resolution beyond the diffraction resolution.The unique anisotropic dispersion of hyperlens could provide the high wave vector component without the resonance relationship,which could also realize the super resolution imaging.Finally,prospective research and development tend of super diffraction laser fabrication technologies are presented.It is necessary to expand the range of materials which can be fabricated by laser beyond the diffraction limit,especially 2D materials.
引文
[1]Wagner C,Harned N 2010 Nat.Photon.4 24
    [2]Gale M T,Knop K 1983 Proc.SPIE 0398 347
    [3]Roth W,Schumacher H,Beneking H 1983 Electron.Lett.19 142
    [4]Rensch C,Hell S,Schickfus M V,Hunklinger S 1989Appl.Opt.28 3754
    [5]Goltsos W C,Liu S A 1990 Proc.SPIE 1211 137
    [6]Haruna M,Takahashi M,Wakahayashi K,Nishihara H1990 Appl.Opt.29 5120
    [7]Cui Z 2005 Micro-Nanofabricatton Technologies and Applications(Beijing:Higher Education Press)p51
    [8]Wang Y,Guo C,Cao S,Miao J,Ren T,Liu Q 2010 J.Nanosci.Nanotechnol.10 7134
    [9]Liu Q,Duan X,Peng C 2014 Novel Optical Technologies for Nanofabrication(Berlin Heidelberg:SpringerVerlag)p8
    [10]Kurihara K,Nakano T,Ikeya H,Ujiie M,Tominaga J2008 Microelectron.Eng.85 1197
    [11]Hao Y F,Sun M Y,Shi S,Pan X,Zhu J Q 2017 Chin.J.Lasers 44 0102015(in Chinese)[郝艳飞,孙明营,时双,潘雪,朱健强2017中国激光44 0102015]
    [12]Yun Z Q,Wei R S,Li W,Luo W W,Wu Q,Xu X G,Zhang X Z 2013 Acta Phys.Sin.62 068101(in Chinese)[云志强,魏汝省,李威,罗维维,吴强,徐现刚,张心正2013物理学报62 068101]
    [13]He F,Xu H,Cheng Y,Ni J,Xiong H,Xu Z,Sugioka K,Midorikawa K 2010 Opt.Lett.35 1106
    [14]Block E,Greco M,Vitek D,Masihzadeh O,Ammar D A,Kahook M Y,Mandava N,Durfee C,Squier J 2013Biomed.Opt.Exp.4 831
    [15]Guo C F,Cao S,Jiang P,Fang Y,Zhang J,Fan Y,Wang Y,Xu W,Zhao Z,Liu Q 2009 Opt.Express 17 19981
    [16]Guo C F,Zhang J,Miao J,Fan Y,Liu Q 2010 Opt.Express 18 2621
    [17]Guo C F,Zhang Z,Cao S,Liu Q 2009 Opt.Lett.342820
    [18]Wang M,Wang C,Tian Y,Zhang J,Guo C,Zhang X,Liu Q 2014 Appl.Surf.Sci.296 209
    [19]Wang Y,Miao J,Tian Y,Guo C,Zhang J,Ren T,Liu Q 2011 Opt.Express 19 17390
    [20]Xia F,Zhang X Z,Wang M,Yi S,Liu Q,Xu J J 2014Opt.Express 22 16889
    [21]Xia F,Zhang X Z,Wang M,Liu Q,Xu J J 2015 Opt.Express 23 29193
    [22]Kaiser W,Garrett C G B 1961 Phys.Rev.Lett.7 229
    [23]Maruo S,Nakamura O,Kawata S 1997 Opt.Lett.22132
    [24]Kawata S,Sun H B,Tanaka T,Takada K 2001 Nature412 697
    [25]Sun H B,Kawakami T,Xu Y,Ye J Y,Matuso S,Misawa H,Miwa M,Kaneko R 2000 Opt.Lett.25 1110
    [26]Sun H B,Suwa T,Takada K,Zaccaria R P,Kim M S,Lee K S,Kawata S 2004 Appl.Phys.Lett.85 3708
    [27]Boyd R W 2003 Nonlinear Optics-Handbook of Laser Technology and Applications(Philadelphia:Taylor&Francis)pl61
    [28]Takada K,Sun H B,Kawata S 2005 Appl.Phys.Lett.86 071122
    [29]Wu D,Chen Q D,Niu L G,Jiao J,Xia H,Song J F,Sun H B 2009 IEEE Photon.Tech.L.21 1535
    [30]Wu D,Niu L G,Chen Q D,Wang R,Sun H B 2008 Opt.Lett.33 2913
    [31]Xia H,Wang J,Tian Y,Chen Q D,Du X B,Zhang Y L,He Y,Sun H B 2010 Adv.Mater.22 3204
    [32]Sun Y L,Dong W F,Yang R Z,Meng X,Zhang L,Chen Q D,Sun H B 2012 Angew.Chem.Int.Ed.51 1558
    [33]Sun Y L,Dong W F,Niu L G,Jiang T,Liu D X,Zhang L,Wang Y S,Chen Q D,Kim D P,Sun H B 2014 Light:Sci.Appl.3 el29
    [34]Xing J F,Dong X Z,Chen W Q,Duan X M,Takeyasu N,Tanaka T,Kawata S 2007 Appl.Phys.Lett.90 131106
    [35]Dong X Z,Zhao Z S,Duan X M 2008 Appl.Phys.Lett.92 091113
    [36]Song Y,Dong X Z,Zhao Z S,Duan X M 2011 High Power Laser Part Beams 23 1780(in Chinese)[宋旸,董贤子,赵震声,段宣明2011强激光与粒子束23 1780]
    [37]Gan Z,Cao Y,Evans R A,Gu M 2013 Nat.Commun.4 2061
    [38]Li W,Cao T X,Zhai Z,Yu X,Zhang X Z,Xu J J 2013Nanotechnology 24 215301
    [39]Long J,Xiong W,Liu Y,Jiang L J,Zhou Y S,Li D W,Jiang L,Lu Y F 2017 Chin.J.Lasers 44 0102003(in Chinese)[龙婧,熊伟,刘莹,蒋立佳,周云申,李大卫,姜澜,陆永枫2017中国激光44 0102003]
    [40]Liu L P,Zhan S J,Yang H,Gong Q H,Li Y 2017 Chin.J.Lasers 44 0102006(in Chinese)[刘力谱,张世杰,杨宏,龚旗煌,李焱2017中国激光44 0102006]
    [41]Sugioka K 2017 Nanophotonics 6 393
    [42]Wu Y E,Ren M X,Wang Z H,Li W,Wu Q,Yi S,Zhang X Z,Xu J J 2014 AIP Adv.4 057107
    [43]Hell S W,Wichmann J 1994 Opt.Lett.19 780
    [44]Klar T A,Jakobs S,Dyba M,Egner A,Hell S W 2000Proc.Natl.Acad.Sci.USA 97 8206
    [45]Hell S W,Dyba M,Jakobs S 2004 Curr.Opin.Neurobiol.14 599
    [46]Li L,Gattass R R,Gershgoren E,Hwang H,Fourkas J T 2009 Science 324 910
    [47]Scott T F,Kowalski B A,Sullivan A C,Bowman C N,Mcleod R R 2009 Science 324 913
    [48]Andrew T L,Tsai H Y,Menon R 2009 Science 324 917
    [49]Fischer J,von Freymann G,Wegener M 2010 Adv.Mater.22 3578
    [50]Wollhofen R,Katzmann J,Hrelescu C,Jacak J,Klar T A 2013 Opt.Express 21 10831
    [51]Kilby J S 1976 IEEE Trans.Electron Devices 23 648
    [52]Chong T C,Hong M H,Shi L P 2010 Laser Photon.Rev.4 123
    [53]Zhou W,Bridges D,Li R,Bai S,Ma Y,Hou T,Hu A2016 Sci.Lett.J.5 228
    [54]Krausch G,Wegscheider S,Kirsch A,Bielefeldt H,Meiners J,Mlynek J 1995 Opt.Commun.119 283
    [55]Sun S,Leggett G J 2002 Nano Lett.2 1223
    [56]Sun S,Leggett G J 2004 Nano Lett.4 1381
    [57]Grigoropoulos C P,Hwang D J 2007 MRS bull.32 16
    [58]Wang L,Uppuluri S M,Jin E X,Xu X 2006 Nano Lett.6 361
    [59]Kim S,Jung H,Kim Y,Jang J,Hahn J W 2012 Adv.Mater.24 OP337
    [60]Terris B,Mamin H,Rugar D,Studenmund W,Kino G1994 Appl.Phys.Lett.65 388
    [61]Terris B,Mamin H,Rugar D 1996 Appl.Phys.Lett.68141
    [62]Tominaga J,Nakano T,Atoda N 1988 Appl.Phys.Lett.73 2078
    [63]Kuwahara M,Nakano T,Tominaga J,Lee M B,Atoda N 1999 Jpn.J.Appl.Phys.38 L1079
    [64]Kuwahara M,Nakano T,Mihalcea C,Shima T,Kim J H,Tominaga J,Atoda N 2001 Microelectron.Eng.57-58883
    [65]Barnes W L,Dereux A,Ebbesen T W 2003 Nature 424824
    [66]Wang C,Zhang W,Zhao Z,Wang Y,Gao P,Luo Y,Luo X 2016 Micromachines 7 118
    [67]Luo X,Ishihara T 2004 Appl.Phys.Lett.84 4780
    [68]Liu Z W,Wei Q H,Zhang X 2005 Nano Lett.5 957
    [69]Liu Z,Wang Y,Yao J,Lee H,Srituravanich W,Zhang X 2009 Nano Lett.9 462
    [70]Xu T,Fang L,Ma J,Zeng B,Liu Y,Cui J,Wang C,Feng Q,Luo X 2009 Appl.Phys.B:Lasers O.97 175
    [71]Dong J,Liu J,Kang G,Xie J,Wang Y 2014 Sci.Rep.4 5618
    [72]Chen X,Yang F,Zhang C,Zhou J,Guo L J 2016 ACS Nano 10 4039
    [73]Liang G,Wang C,Zhao Z,Wang Y,Yao N,Gao P,Luo Y,Gao G,Zhao Q,Luo X 2015 Adv.Opt.Mater.3 1248
    [74]Li Y,Liu F,Xiao L,Cui K,Feng X,Zhang W,Huang Y 2013 Appl.Phys.Lett.102 063113
    [75]Li Y,Liu F,Ye Y,Meng W,Cui K,Feng X,Zhang W,Huang Y 2014 Appl.Phys.Lett.104 081115
    [76]Birnbaum M 1965 J.Appl.Phys.36 3688
    [77]Borowiec A,Haugen H 2003 Appl.Phys.Lett.82 4462
    [78]Jia T,Chen H,Huang M,Zhao F,Qiu J,Li R Xu Z,He X,Zhang J,Kuroda H 2005 Phys.Rev.B 72 125429
    [79]Vorobyev A,Guo C 2005 Phys.Rev.B 72 195422
    [80]Qi L T,Nishii K,Namba Y 2009 Opt.Lett.34 1846
    [81]Oktem B,Pavlov I,Ilday S,Kalaycioglu H,Rybak A,Yavas S,Erdogan M,Ilday F O 2013 Nat.Photon.7897
    [82]Bonse J,Hohm S,Rosenfeld A,Kruger J 2013 Appl.Phys.A 110 547
    [83]He X,Datta A,Nam W,Traverso L M,Xu X 2016 Sci.Rep.6 35035
    [84]Huang M,Zhao F,Cheng Y,Xu N,Xu Z 2009 ACS Nano 3 4062
    [85]Yuan Y,Jiang L,Li X,Wang C,Lu Y 2012 J.Appl.Phys.112 103103
    [86]Yang M,Wu Q,Chen Z,Zhang B,Tang B,Yao J,Drevensek Olenik I,Xu J J 2014 Opt.Lett.39 343
    [87]Shimotsuma Y,Kazansky P G,Qiu J,Hirao K 2003Phys.Rev.Lett.91 247405
    [88]Wang Y C,Zhang F T,Qiu J R 2017 Chin.J.Lasers44 0102001(in Chinese)[王珏晨,张芳腾,邱建荣2017中国激光44 0102001]
    [89]Dai Y,Wu G,Lin X,Ma G,Qiu J R 2012 Opt.Express20 18072
    [90]Liao Y,Ni J,Qiao L,Huang M,Bellouard Y,Sugioka K,Cheng Y 2015 Optica 2 329
    [91]Pendry J B 2000 Phys.Rev.Lett.85 3966
    [92]Fang N,Lee H,Sun C,Zhang X 2005 Science 308 534
    [93]Chaturvedi P,Wu W,Logeeswaran V,Yu Z,Islam M S,Wang S Y,Williams R S,Fang N X 2010 Appl.Phys.Lett.96 043102
    [94]Liu H,Wang B,Ke L,Deng J,Chum C C,Teo S L,Shen L,Maier S A,Teng J 2012 Nano Lett.12 1549
    [95]Jacob Z,Alekseyev L V,Narimanov E 2006 Opt.Express14 8247
    [96]Liu Z,Lee H,Xiong Y,Sun C,Zhang X 2007 Science315 1686
    [97]Lee H,Liu Z,Xiong Y,Sun C,Zhang X 2007 Opt.Express 15 15886
    [98]Rho J,Ye Z,Xiong Y,Yin X,Liu Z,Choi H,Bartal G,Zhang X 2010 Nat.Commun.1 143
    [99]Xiong Y,Liu Z,Zhang X 2008 Appl.Phys.Lett.93111116
    [100]Xiong Y,Liu Z,Zhang X 2009 Appl.Phys.Lett.94203108
    [101]Chen L,Wang G P 2009 Opt.Express 17 3903
    [102]Aronovich D,Bartal G 2013 Opt.Lett.38 413
    [103]Zhang T,Chen L,Li X 2013 Opt.Express 21 20888
    [104]Xu F,Chen G,Wang C,Cao B,Lou Y 2013 Opt.Lett.38 3819
    [105]Gao P,Yao N,Wang C,Zhao Z,Luo Y,Wang Y,Gao G,Liu K,Zhao C,Luo X 2015 Appl.Phys.Lett.106093110