电子束重熔对机械合金化法制备TiC/Ti复合涂层组织及摩擦性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of electron beam remelting on microstructure and tribological properties of TiC/Ti composite coating prepared by mechanical alloying
  • 作者:方超 ; 姚正军 ; 张莎莎 ; 陶学伟 ; 刘莹莹
  • 英文作者:FANG Chao;YAO Zhengjun;ZHANG Shasha;TAO Xuewei;LIU Yingying;College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics;Key Laboratory of Materials Preparation and Protection for Harsh Environment,Ministry of Industry and Information Technology;
  • 关键词:TiC/Ti ; 复合涂层 ; 电子束重熔 ; 机械合金化 ; 耐磨性能
  • 英文关键词:TiC/Ti;;composite coating;;electron beam remelting;;mechanical alloying;;wear resistance property
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:南京航空航天大学材料科学与技术学院;面向苛刻环境的材料制备与防护技术工业和信息化部重点实验室;
  • 出版日期:2018-05-17 09:11
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:江苏省“六大人才高峰”第十二批高层次人才资助项目(YPC16005-PT);; 江苏高校优势学科建设工程资助项目
  • 语种:中文;
  • 页:FUHE201901020
  • 页数:11
  • CN:01
  • ISSN:11-1801/TB
  • 分类号:173-183
摘要
对机械合金化(MA)法制备的TiC/Ti复合涂层进行电子束重熔处理,分析了经过不同电子束扫描速度的重熔工艺后TiC/Ti复合涂层组织和耐磨性能的变化规律。结果表明,当扫描速度为5~15mm/s时,重熔处理消除了MA法制备的TiC/Ti复合涂层中的孔隙和裂纹,使其硬度与耐磨性能显著提高;但扫描速度过快(20mm/s)时,TiC/Ti复合涂层内部出现重熔导致的孔洞缺陷。随着扫描速度由5mm/s增加至15mm/s,重熔后TiC/Ti复合涂层中的TiC相由粗大树枝状晶体逐渐转变为弥散分布的短棒和颗粒状晶体,弥散强化作用和固溶强化作用逐渐增强,TiC/Ti复合涂层的硬度由重熔前HV 554逐渐提高至HV 783,磨损速率由5.93×10-4mm3(N·m)-1逐渐下降至1.75×10-4 mm3(N·m)-1,扫描速度为15mm/s重熔后TiC/Ti复合涂层的性能最佳。
        An electron beam was applied to remelt TiC/Ti composite coating prepared by mechanical alloying(MA)method.The microstructure and wear resistance of the coatings were analyzed after electron beam remelting with different scanning velocities.The results show that when the scanning velocity is between 5 mm/s and 15 mm/s,the hardness and wear resistance of TiC/Ti composite coatings are significantly improved due to elimination of the pores and cracks through remelting process.Remelting defects appear inside the coating when the scanning velocity is too fast(20 mm/s).With the increase of scanning velocity from 5 mm/s to 15 mm/s,TiC phase in the TiC/Ti composite coating changes from coarse dendritic crystals to short rod-like and granular crystals gradually,enhancing the dispersion strengthening effect and solid solution strengthening effect.The hardness of TiC/Ti composite coatings increase from HV 554(before remelting)to HV 783,and the wear rate of the coating decreases from 5.93×10-4 mm3(N·m)-1 to 1.75×10-4 mm3(N·m)-1 with the increase of scanning velocity.The remelted TiC/Ti composite coating reaches the best performance at the scanning velocity of 15 mm/s.
引文
[1]韩远飞,孙相龙,邱培坤,等.颗粒增强钛基复合材料先进加工技术研究与进展[J].复合材料学报,2017,34(8):1625-1635.HAN Y F,SUN X L,QIU P K,et al.Research and development of processing technology on particulate reinforced titanium matrix composite[J].Acta Materiae Compositae Sinica,2017,34(8):1625-1635(in Chinese).
    [2]戎旭东,黄陆军,王博,等.热处理对网状结构TiBW/Ti60复合材料组织与性能的影响[J].复合材料学报,2015,32(6):1729-1736.RONG X D,HUANG L J,WANG B,et al.Effects of heat treatment on microstructure and properties of TiBW/Ti60composites with network microstructure[J].Acta Materiae Compositae Sinica,2015,32(6):1729-1736(in Chinese).
    [3] HONG X,TAN Y F,WANG X L,et al.Microstructure and wear resistant performance of TiN/Zr-base amorphous nanocrystalline composite coatings on titanium alloy by electrospark deposition[J].Surface&Coatings Technology,2016,305:67-75.
    [4] WEI W H,SHAO Z N,SHEN J,et al.Microstructure and mechanical properties of in situ formed TiC-reinforced Ti-6Al-4V matrix composites[J].Materials Science&Technology,2017,34(2):191-198.
    [5] CANDEL J J,AMIGO V,RAMOS J A,et al.Sliding wear resistance of TiCp,reinforced titanium composite coating produced by laser cladding[J].Surface&Coatings Technology,2010,204(20):3161-3166.
    [6] MA Z Y,MISHRA R S,TJONG S C.High-temperature creep behavior of TiC particulate reinforced Ti-6Al-4Valloy composite[J].Acta Materialia,2002,50(17):4293-4302.
    [7] WANG H M,YU L G,LI X X,et al.Microstructure and wear resistance of laser-surface-carbonized TiC/TiAl composite coating on a gamma-TiAl intermetallic alloy[C]//1999International Conference on Industrial Lasers.Society of Photo-Optical Instrumentation Engineers,1999:3862.
    [8]孟君晟,史晓萍,王振廷,等.TC4合金表面氩弧熔覆TiCp/Ti基复合涂层组织及耐磨性[J].稀有金属材料与工程,2012,41(7):1259-1262.MENG J S,SHI X P,WANG Z T,et al.Microstructure and wear resistance of TiCp/Ti composite coating on TC4alloy by argon arc cladding[J].Rare Metal Materials and Engineering,2012,41(7):1259-1262(in Chinese).
    [9]孙耀宁.激光熔覆TiC增强Ti基复合涂层的组织与性能[J].应用激光,2008,28(4):282-286.SUN Y N.Microstructures and properties of laser clad TiC reinforced Ti matrix composite coatings[J].Applied Laser,2008,28(4):282-286(in Chinese).
    [10] ZHANG S,WU W T,WANG M C,et al.In-situ synthesis and wear performance of TiC particle reinforced composite coating on alloy Ti6Al4V[J].Surface&Coatings Technology,2001,138(1):95-100.
    [11] DONG Y J,WANG H M.Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti-Ni-Si intermetallic composite coating[J].Surface&Coatings Technology,2009,204(5):731-735.
    [12] MOHAMMADNEZHAD M,SHAMANIAN M,ENAYATI M H,et al.Microstructures and properties of NiAl-TiC nanocomposite coatings on carbon steel surfaces produced by mechanical alloying technique[J].Surface&Coatings Technology,2014,238:180-187.
    [13]孙斌斌,李玉芳,顾冬冬.机械球磨法制备TiC/Al复合涂层的显微组织及力学性能[J].兵器材料科学与工程,2010,33(1):81-84.SUN B B,LI Y F,GU D D.Microstructure and mechanical properties of TiC/Al composite coating fabricated by high energy ball milling technique[J].Ordnance Material Science and Engineering,2010,33(1):81-84(in Chinese).
    [14] FARHAD S,ELMIRA K,JALIL K,et al.Fabrication of nanocrystalline TiC coating on AISI D2steel substrate via high-energy mechanical alloying of Ti and C[J].Powder Technology,2016,288:76-86.
    [15]于惠博,孙宏飞,武彬,等.降低涂层孔隙率的研究进展[J].材料导报,2007,21(1):68-71.YU H B,SUN H F,WU B,et al.Research development of the way to decrease thermal spraying coating porosity[J].Materials Review,2007,21(1):68-71(in Chinese).
    [16] UTU D,BRANDL W,MARGINEAN G,et al.Morphology and phase modification of HVOF-sprayed MCrAlY-coatings remelted by electron beam irradiation[J].Vacuum,2005,77(4):451-455.
    [17] UTU I D,MARGINEAN G.Effect of electron beam remelting on the characteristics of HVOF sprayed Al2O3-TiO2,coatings deposited on titanium substrate[J].Colloids&Surfaces A:Physicochemical&Engineering Aspects,2017,526:70-75.
    [18] KRAJˇNKOVP G,DLOUHY I,ˇCˇZEK J,et al.Effect of double electron beam remelting on microstructure of HVOF and CGDS bond coat[J].Materials Science Forum,2017,891:574-578.
    [19] HE J,ZHANG B,ZHENG K,et al.Morphology of sintered silicide coatings remelted by high frequency electron beam[J].Surface&Coatings Technology,2012,209:52-57.
    [20] JUNG A,BUCHWALDER A,HEGELMANN E,et al.Surface engineering of spray-formed aluminium-silicon alloys by plasma nitriding and subsequent electron beam remelting[J].Surface&Coatings Technology,2017,335:166-172.
    [21] KRANSWSKI M,WITEK A,KULIK T.The FeAl-30%TiC nanocomposite produced by mechanical alloying and hotpressing consolidation[J].Intermetallics,2002,10(4):371-376.
    [22] LI B,DING R D,SHEN Y F,et al.Preparation of Ti-Cr and Ti-Cu flame-retardant coatings on Ti-6Al-4V using a high-energy mechanical alloying method:A preliminary research[J].Materials&Design,2012,35:25-36.
    [23]张志晓,杜贤武,王为民,等.高活性B4C-SiC超细复合粉体的制备及烧结[J].无机材料学报,2014,29(2):185-190.ZHANG Z X,DU X W,WANG W M,et al.Preparation and sintering of high active and ultrafine B4C-SiC composite powders[J].Journal of Inorganic Materials,2014,29(2):185-190(in Chinese).
    [24] GU D D,MEINERS W,LI C,et al.In situ synthesized TiC/Ti5Si3,nanocomposites by high-energy mechanical alloying:Microstructural development and its mechanism[J].Materials Science&Engineering A,2010,527(23):6340-6345.
    [25] GU D D,MEINERS W,HAGEDORN Y,et al.Structural evolution and formation mechanisms of TiC/Ti nanocomposites prepared by high-energy mechanical alloying[J].Journal of Physics D:Applied Physics,2010,43(43):880-886.
    [26]汤文明,李猛,郑治祥,等.机械合金化及热处理过程中Ti50C50二元系统的结构演变[J].材料热处理学报,2005,26(6):25-29.TANG W M,LI M,ZHENG Z X,et al.Structural evolution of Ti50C50binary system during mechanical alloying and heat treatment[J].Transactions of Materials and Heat Treatment,2005,26(6):25-29(in Chinese).
    [27] LOHSE B H,CALKA A,WEXLER D.Synthesis of TiC by controlled ball milling of titanium and carbon[J].Journal of Materials Science,2007,42(1):669-675.
    [28] GHOSHA B,PRADHANB S K.Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying[J].Materials Chemistry and Physics,2010,120(2-3):537-545.
    [29] GALARRAGA H,LADOS D A,DEHOFF R R,et al.Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting(EBM)[J].Additive Manufacturing,2016,10(47):47-57.
    [30]于秀平.激光烧结制备多孔镍基合金及烧结性能研究[D].南京:南京航空航天大学,2010.YU X P.Preparation of porous Ni-based alloy by laser sintering and analysis of sintering properties[D].Nangjing:Nangjing University of Aeronautics and Astronautics,2010(in Chinese).
    [31] DESHPANDE P K,LIN R Y.Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity[J].Materials Science&Engineering A,2006,418(1-2):137-145.
    [32] JIANG C,CHEN H,WANG G,et al.Improvements in microstructure and wear resistance of plasma-sprayed Fe-based amorphous coating by laser-remelting[J].Journal of Thermal Spray Technology,2017,26(44-49):1-9.
    [33]王晶,宋仁国,林鑫,等.γ-TiAl金属间化合物合金表面激光熔覆TiC-Ti-Al涂层研究[J].稀有金属材料与工程,2008,37(12):2191-2195.WANG J,SONG R G,LIN X,et al.Investigations of laser cladding TiC-Ti-Al coatings onγ-TiAl intermetallic alloy[J].Rare Metal Materials and Engineering,2008,37(12):2191-2195(in Chinese).
    [34] DUSCHANEK H,ROGL P.A critical assessment and thermodynamic calculation of the boron-carbon-titanium(B-C-Ti)ternary system[J].Journal of Phase Equilibria,1995,16(1):46-60.
    [35]吕祥鸿,杨延清,马志军,等.SiC连续纤维增强Ti基复合材料界面反应扩散研究进展[J].稀有金属材料与工程,2006,35(1):164-168.LV X H,YANG Y Q,MA Z J,et al.Studies on the behaviors of interfacial reaction diffusion of SiC continuous fiberreinforced Ti matrix composites[J].Rare Metal Materials and Engineering,2006,35(1):164-168(in Chinese).
    [36] RAJABI A,GHAZALI M J.Quantitative analyses of TiC nanopowders via mechanical alloying method[J].Ceramics International,2017,43:14233-14243.
    [37]吕维洁,杨志峰,张荻,等.原位合成钛基复合材料增强体TiC的微结构特征[J].中国有色金属学报,2002,12(3):511-515.LV W J,YANG Z F,ZHANG D,et al.Microstructural characterization of TiC in in situ synthesized titanium matrix composites[J].The Chinese Journal of Nonferrous Metals,2002,12(3):511-515(in Chinese).
    [38] LV W J,ZHANG D,ZHANG X N,et al.Growth mechanism of reinforcements in in-situ synthesized(TiB+TiC)/Ti composites[J].Transactions of Nonferrous Metals Society of China,2001,11(1):67-71.
    [39] YU H L,ZHANG W,WANG H M,et al.In-situ synthesis of TiC/Ti composite coating by high frequency induction cladding[J].Journal of Alloys&Compounds,2017,701:244-255.
    [40] DAS M,BHATTACHARYA K,DITTRICK S A,et al.In situ,synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings:Microstructure,tribological and in-vitro,biocompatibility[J].Journal of the Mechanical Behavior of Biomedical Materials,2014,29(1):259-271.
    [41] JANG B K,MATSUBARA H.Influence of porosity on hardness and Young's modulus of nanoporous EB-PVD TBCs by nanoindentation[J].Materials Letters,2005,59(27):3462-3466.
    [42] AN Q,HUANG L J,JIANG S,et al.Microstructure evolution and mechanical properties of TIG cladded TiB reinforced composite coating on Ti-6Al-4V alloy[J].Vacuum,2017,145:312-319.
    [43] SCHMAUDER S,KOHLER C.Atomistic simulations of solid solution strengthening ofα-iron[J].Computational Materials Science,2011,50(4):1238-1243.
    [44] KUMAR G S P,KOPPAD P G,KESHAVAMURTHY R,et al.Microstructure and mechanical behaviour of in situ fabricated AA6061-TiC metal matrix composites[J].Archives of Civil&Mechanical Engineering,2017,17(3):535-544.
    [45] MIYOSHI K,SANDERS J H,HAGER J C H,et al.Wear behavior of low-cost,lightweight TiC/Ti-6Al-4Vcomposite under fretting:Effectiveness of solid-film lubricant counterparts[J].Tribology International,2007,41(1):24-33.
    [46]龙雁,黄小龙,王韬.晶粒细化对放电等离子烧结TC4合金微动磨损性能的影响[J].稀有金属材料与工程,2015,44(7):1713-1718.LONG Y,HUANG X L,WANG T.Effect of grain refinement on the fretting wear properties of spark plasma sintered TC4alloy[J].Rare Metal Materials and Engineering,2015,44(7):1713-1718(in Chinese).
    [47] TAO X W,YAO Z J,LUO X X.Comparison of tribological and corrosion behaviors of Cp Ti coated with the TiO2/graphite coating and nitrided TiO2/graphite coating[J].Journal of Alloys&Compounds,2017,718:126-133.
    [48]尹衍升,李静,马洪涛.烧结Fe3Al金属间化合物基摩擦材料的摩擦磨损性能研究[J].摩擦学学报,2004,24(5):457-461.YIN Y S,LI J,MA H T.Friction and wear behavior of sintered Fe3Al intermetallic-based friction materials[J].Tribo-logy,2004,24(5):457-461(in Chinese).
    [49]安家财,杜三明,肖宏滨,等.等离子喷涂ZrO2/Al2O3陶瓷涂层的摩擦磨损性能[J].中国表面工程,2011,24(1):20-24.AN J C,DU S M,XIAO H B,et al.Tribological properties of plasma sprayed ZrO2/Al2O3ceramic coatings[J].China Surface Engineering,2011,24(1):20-24(in Chinese).
    [50] CAI C,SONG B,QIU C L.Hot isostatic pressing of in-situ TiB/Ti-6Al-4Vcomposites with novel reinforcement architecture,enhanced hardness and elevated tribological properties[J].Journal of Alloys&Compounds,2017,710:364-374.
    [51] GU D D,MENG G B,LI C,et al.Selective laser melting of TiC/Ti bulk nanocomposites:Influence of nanoscale reinforcement[J].Scripta Materialia,2012,67(2):185-188.
    [52]马少明.轻质高强铝合金钻杆材料组织与性能的改善研究[D].吉林:吉林大学,2017.MA S M.Study on the improvement of microstructure and properties of lightweight high strength aluminium alloy drill pipe[D].Jilin:Jilin University,2017(in Chinese).