弱光胁迫对分蘖期超级稻与常规稻叶片光合特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The effect of weak light stress on leaf photosynthetic characteristics in super hybrid rice and conventional rice at tillering stage
  • 作者:王成孜 ; 高丽敏 ; 孙玉明 ; 王博 ; 郭世伟
  • 英文作者:WANG Chengzi;GAO Limin;SUN Yuming;WANG Bo;GUO Shiwei;Jiangsu Provincial Key Lab of Solid Organic Waste Utilization/Jiangsu Collaborative Innovation Center of Solid Organic Wastes/Educational Ministry Engineering Center of Resource-saving Fertilizers,Nanjing Agricultural University;
  • 关键词:超级杂交稻 ; 常规稻 ; 弱光胁迫 ; 光合速率 ; 叶肉导度
  • 英文关键词:super hybrid rice;;conventional rice;;weak light stress;;photosynthetic rate;;mesophyll conductance
  • 中文刊名:NJNY
  • 英文刊名:Journal of Nanjing Agricultural University
  • 机构:南京农业大学江苏省固体有机废弃物资源化研究重点实验室/江苏省有机固体废弃物协同创新中心/教育部资源节约型肥料工程技术研究中心;
  • 出版日期:2019-01-18
  • 出版单位:南京农业大学学报
  • 年:2019
  • 期:v.42;No.180
  • 基金:国家公益性行业(农业)科研专项(20150312205)
  • 语种:中文;
  • 页:NJNY201901016
  • 页数:7
  • CN:01
  • ISSN:32-1148/S
  • 分类号:117-123
摘要
[目的]本文旨在探明超级稻与常规稻的光合特性对弱光胁迫的响应及其机制。[方法]以‘国稻6号’‘Ⅱ优084’(超级杂交稻)和‘扬稻6号’(常规稻)为试验材料,采用室内营养液培养,通过供应低强度(200μmol·m~(-2)·s~(-1))光照模拟弱光胁迫的方法,分析弱光胁迫对分蘖期超级稻及常规稻叶片光合特性的影响。[结果]弱光胁迫导致水稻生物量及叶片光合速率(P_n)显著降低,超级杂交稻的P_n显著高于常规稻;弱光胁迫下水稻叶片的光系统Ⅱ实际光化学效率(ΦPSⅡ)、羧化效率(CE)及叶片叶肉导度均显著降低,且超级稻降幅大于常规稻;弱光导致超级稻及常规稻的1,5-二磷酸核酮糖羧化酶/氧化酶(Rubisco)含量显著降低,且弱光胁迫下超级稻Rubisco活性(CE/Rubisco)显著高于常规稻。[结论]弱光胁迫对叶片光合速率的抑制主要是由于叶片ΦPSⅡ下降及暗反应过程中叶肉导度下降导致羧化效率下降造成的;超级稻弱光胁迫下光合速率高于常规稻主要是由于其具有更高的Rubisco活性及叶肉导度。
        [Objectives]This paper aims to study the effects of weak light stress on photosynthesis characteristics and the related mechanisms in super hybrid and conventional cultivars. [Methods]A hydroponic experiment in the greenhouse with simulated weak light stress induced by different illumination intensity was conducted in two rice cultivars,including super hybrid rice( 'Guodao 6'and'Liangyou 084') and conventional rice( 'Yangdao 6'),which aims to study the effects of weak light stress on leaf photosynthetic characteristics. [Results]The biomass and leaf photosynthesis rate( P_n) both significantly decreased under weak light stress,while the leaf P_nin super hybrid rice was higher than that in conventional rice. Meawhile,significantly decreased quantum efficiency of PSⅡ( ΦPSⅡ),carboxylation efficiency( CE),and mesophyll conductance( gm) were observed in rice leaves under weak light condition,while more drastic decreases were found in super hybrid rice. Ribulose-1,5-bisphosphate carboxylase/oxygenase( Rubisco) content under weak light condition decreased by 45% and 32% in super hybrid rice and conventional rice,respectively,while Rubsico activity( expressed as the CE per Rubisco content) under weak light condition was higher in super hybrid rice than that in conventional rice. [Conclusions]The inhibited photosynthesis rate under weak light intensity was mainly due to the decreased leaf quantum efficiency of PSⅡ( ΦPSⅡ) and the decreased CE resulted from gm. The different responses of photosynthesis rate to weak light stress in different rice cultivars resulted from the higher Rubisco activity and gmin super hybrid rice.
引文
[1]朱德峰,张玉屏,陈惠哲,等.中国水稻高产栽培技术创新与实践[J].中国农业科学,2015,48(17):3404-3414.Zhu D F,Zhang Y P,Chen H Z,et al. Innovation and practice of high-yield rice cultivation technology in China[J]. Scientia Agricultura Sinica,2015,48(17):3404-3414(in Chinese with English abstract).
    [2]龚金龙,张洪程,李杰,等.超级稻生态育种及超高产栽培特征与途径的研究进展[J].中国农业科技导报,2011(1):25-33.Gong J L,Zhang H C,Li J,et al. Research progress ecological breeding and cultivation characteristics of super rice and approaches of super high yield[J]. Journal of Agricultural Science and Technology,2011(1):25-33(in Chinese with English abstract).
    [3] Zhang Y,Tang Q,Zou Y,et al. Yield potential and radiation use efficiency o“fsuper”hybrid rice grown under subtropical conditions[J]. Field Crops Research,2009,114(1):91-98.
    [4] Zhang H,Xue Y G,Wang Z Q,et al. Morphological and physiological traits of roots and their relationships with shoot growth in“super”rice[J].Field Crops Research,2009,113(1):31-40.
    [5] Katsura K,Maeda S,Horie T,et al. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu,a hybrid rice recently bred in China[J]. Field Crops Research,2007,103(3):170-177.
    [6] Yang J C,Zhang J H. Grain-filling problem in“super”rice[J]. Journal of Experimental Botany,2010,61(1):1-5.
    [7] Sheehy J E,Dionora M J A,Mitchell P L. Spikelet numbers,sink size and potential yield in rice[J]. Field Crops Research,2001,71(2):77-85.
    [8]李杰,张洪程,常勇,等.高产栽培条件下种植方式对超级稻根系形态生理特征的影响[J].作物学报,2011,37(12):2208-2220.Li J,Zhang H C,Chang Y,et al. Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition[J]. Acta Agronomica Sinica,2011,37(12):2208-2220(in Chinese with English abstract).
    [9]洪彬艺.超级稻推广的主要制约因素和对策措施[J].福建农业科技,2010(4):1-2.Hong B Y. The main constraints and countermeasures of the super rice promotion[J]. Fujian Agricultural Science and Technology,2010(4):1-2(in Chinese).
    [10]蔡昆争,骆世明.不同生育期遮光对水稻生长发育和产量形成的影响[J].应用生态学报,1999,10(2):193-196.Cai K Z,Luo S M. Effect of shading on growth,development and yield formation of rice[J]. Chinese Journal of Applied Ecology,1999,10(2):193-196(in Chinese with English abstract).
    [11]付景,王志琴,杨建昌.抽穗灌浆期低温与弱光对超级稻结实率和生理性状的影响[J].扬州大学学报(农业与生命科学版),2014,35(4):68-74.Fu J,Wang Z Q,Yang J C. Effects of low temperature and weak light during heading and grain filling on the seed-setting rate and physiological traits of super rice[J]. Journal of Yangzhou University(Agricultural and Life Science Edition),2014,35(4):68-74(in Chinese with English abstract).
    [12] Lu Z J,Neumann P M. Water-stressed maize,barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition[J].Journal of Experimental Botany,1998,49(329):1945-1952.
    [13]张志良,瞿伟菁.植物生理学实验指导[M]. 3版.北京:高等教育出版社,1986:11.Zhang Z L,Qu W J. Experimental Guidance on Plant Physiology[M]. 3rd ed. Beijing:Higher Education Press,1986:11(in Chinese).
    [14] Terashima I,Hikosaka K. Comparative ecophysiology of leaf and canopy photosynthesis[J]. Plant,Cell and Environment,1995,18(10):1111-1128.
    [15] Dai Y J,Shen Z G,Liu Y,et al. Effects of shade treatments on the photosynthetic capacity,chlorophyll fluorescence,and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg[J]. Environmental and Experimental Botany,2009,65(2):177-182.
    [16] Yamori W,Evans J R,van Caemmerer S. Effects of growth and measurement light intensities on temperature dependence of CO2assimilation rate in tobacco leaves[J]. Plant,Cell and Environment,2010,33(3):332-343.
    [17]周艳虹,黄黎锋,喻景权.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光碎灭和吸收光能分配的影响[J].植物生理与分子生物学学报,2004,30(2):153-160.Zhou Y H,Huang L F,Yu J Q. The effects of low temperature and low light on the gas exchange,chlorophyll fluorescence and absorption spectra of cucumber leaves[J]. Journal of Plant Physiology and Molecular Biology,2004,30(2):153-160(in Chinese with English abstract).
    [18] Ivanova L A,Ivanov L A,Ronzhina D A,et al. Shading-induced changes in the leaf mesophyll of plants of different functional types[J]. Russian Journal of Plant Physiology,2008,55(2):211-219.
    [19] Evans J R,Kaldenhoff R,Terashima I. Resistances along the CO2diffusion pathway inside leaves[J]. Journal of Experimental Botany,2009,60:2235-2248.
    [20] Terashima I,Hanba Y T,Tholen D,et al. Leaf functional anatomy in relation to photosynthesis[J]. Plant Physiology,2011,155(1):108-116.
    [21] Terashima I,Hanba Y T,Tazoe Y,et al. Irradiance and phenotype:comparative eco-development of sun and shade leaves in relation to photosynthetic CO2diffusion[J]. Journal of Experimental Botany,2006,57(2):343-354.
    [22] Tosens T,NiinemetsU,Vislap V,et al. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula:how structure constrains function[J]. Plant,Cell and Environment,2012,35(5):839-856.
    [23] Hanba Y T,Kogami H,Terashima I. The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand[J].Plant,Cell and Environment,2002,25(8):1021-1030.
    [24] Jin S H,Hong J,Li X Q,et al. Antisense inhibition of rubisco activase increases rubisco content and alters the proportion of rubisco activase in stroma and thylakoids in chloroplasts of rice leaves[J]. Annals of Botany,2006,97(5):739-744.
    [25] Galmés J,Ribas-CarbóM,Medrano H,et al. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2concentration under water stress[J]. Journal of Experimental Botany,2011,62(2):653-665.
    [26] Sage R F,Pearcy R W. The nitrogen use efficiency of C3and C4plants[J]. Plant Physiology,1987,84(3):959-963.
    [27] Manter D K. A/Cicurve analysis across a range of woody plant species:influence of regression analysis parameters and mesophyll conductance[J].Journal of Experimental Botany,2004,55(408):2581-2588.
    [28] NiinemetsU. Photosynthesis and resource distribution through plant canopies[J]. Plant,Cell and Environment,2007,30(9):1052-1071.
    [29] Yamori W,Nagai T,Makino A. The rate-limiting step for CO2assimilation at different temperatures is influenced by the leaf nitrogen content in several C3crop species[J]. Plant,Cell and Environment,2011,34(5):764-777.