液液微分散及其用于标准颗粒制备的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in liquid-liquid micro-dispersion and its applications in standard particle preparation
  • 作者:李严凯 ; 王凯 ; 骆广生
  • 英文作者:LI Yankai;WANG Kai;LUO Guangsheng;State Key Laboratory of Chemical Engineering, Tsinghua University;
  • 关键词:微液滴 ; 微分散 ; 微流体学 ; 传递过程 ; 界面张力 ; 标准颗粒
  • 英文关键词:micro-droplet;;micro-dispersion;;microfluidics;;transport process;;interfacial tension;;standard particle
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:清华大学化学工程联合国家重点实验室;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金(U1463208,91334201)
  • 语种:中文;
  • 页:HGJZ201901005
  • 页数:15
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:37-51
摘要
液液分散与液滴生成是化工生产最典型的多尺度动态过程之一,针对该类过程的精准控制是化工研究的难点与重点。近年来,伴随机械微加工与流体微量输运技术的快速兴起,基于微米尺度作用的微化工技术在液液分散与液滴生成的调控中展现出了显著优势,成为化工研究的前沿方向。本文针对近年来在微分散基本规律、微分散动态界面现象与微分散标准颗粒材料等领域的研究进展进行综述:围绕微分散基本规律,介绍了微尺度液滴破碎的主导作用力、液液微分散流型及微分散数值模拟方法;围绕微分散动态界面现象,分析了动态界面张力的变化规律及其影响因素;围绕微分散标准颗粒制备,简述了微分散颗粒制备的主流技术及其适用范围。同时,针对相关领域的发展方向进行了展望。
        Liquid-liquid dispersion process is one of the most typical chemical engineering processes,and the precise control of such processes is the key point for chemical engineering research. Micro-structured chemical systems perform multi-scale manipulation of liquid-liquid multi-phase flows, andhave been regarded as one of the most promising techniques for liquid-liquid dispersion and dropletgeneration. In this paper, recent progresses in droplet generation mechanism, dynamic interfacial tensions(IFTs) and standard particle preparation were introduced. Dominant forces of droplet rupture, flow patterns of liquid-liquid micro-dispersion and micro-dispersion computational fluid dynamics(CFD) methods were firstly introduced. Then, the mechanism of dynamic interfacial tensions(IFTs) wereanalyzed. Micro-dispersion techniques for particle preparation were finally stated. This review also presents outlook to the future research areas of micro-dispersion and particle preparation.
引文
[1] JENSEN K F. Microchemical systems:status, challenges, andopportunities[J]. AIChE Journal, 1999, 45(10):2051-2054.
    [2] JENSEN K F.Flow chemistry-microreaction technology comes ofage[J]. AIChE Journal, 2017, 63(3):858-869.
    [3] WHITESIDES G M.The origins and the future of microfluidics[J].Nature, 2006, 442(7101):368-373.
    [4] SHANG L, CHENG Y, ZHAO Y.Emerging droplet microfluidics[J]. Chemical Reviews, 2017, 117(12):7964-8040.
    [5] NUNES J K, TSAI S, WAN J, et al. Dripping and jetting inmicrofluidic multiphase flows applied to particle and fibresynthesis[J]. Journal of physics D:Applied Physics, 2013, 11(46):114002.
    [6] UTADA A S, CHU L Y, FERNANDEZ-NIEVES A, et al.Dripping, jetting, drops, and wetting:the magic of microfluidics[J].MRS Bulletin, 2007, 32(9):702-708.
    [7] BASARAN O A. Small-scale free surface flows with breakup:drop formation and emerging applications[J]. AIChE Journal,2002,48(9):1842-1848.
    [8] ADAMO A, BEINGESSNER R L, BEHNAM M, et al. On-demandcontinuous-flow production of pharmaceuticals in a compact,reconfigurable system[J]. Science, 2016, 352(6281):61-67.
    [9] MASCIA S, HEIDER P L, ZHANG H, et al. End-to-endcontinuous manufacturing of pharmaceuticals:integratedsynthesis, purification, and final dosage formation[J]. AngewandteChemie International Edition, 2013, 52(47):12359-12363.
    [10] XIE L, SHEN Y, FRANKE D, et al. Characterization of indiumphosphide quantum dot growth intermediates using MALDI-TOFmass spectrometry[J]. Journal of the American Chemical Society,2016, 138(41):13469-13472.
    [11] NIGHTINGALE A M, PHILLIPS T W, BANNOCK J H, et al.Controlled multistep synthesis in a three-phase droplet reactor[J].Nature Communications, 2014, 5:3777.
    [12] WANG K, LUO G. Microflow extraction:a review of recentdevelopment[J]. Chemical Engineering Science, 2017, 169:18-33.
    [13] ADAMO A, HEIDER P L, WEERANOPPANANT N, et al.Membrane-based, liquid-liquid separator with integratedpressure control[J]. Industrial&Engineering Chemistry Research,2013, 52(31):10802-10808.
    [14] GU H, DUITS M H G, MUGELE F. Droplets formation andmerging in two-phase flow microfluidics[J]. International Journalof Molecular Sciences, 2011, 12(4):2572-2597.
    [15] MARRE S, JENSEN K F. Synthesis of micro and nanostructuresin microfluidic systems[J]. Chemical Society Reviews, 2010, 39(3):1183-1202.
    [16] XU S, NIE Z, SEO M, et al. Generation of monodisperse particlesby using microfluidics:control over size, shape, and composition[J]. Angewandte Chemie International Edition, 2005, 117(5):734-738.
    [17] MASON T G, BIBETTE J. Shear rupturing of droplets in complexfluids[J]. Langmuir, 1997, 13(17):4600-4613.
    [18] KACI M, ARAB-TEHRANY E, DESJARDINS I, et al.Emulsifierfree emulsion:comparative study between a new high frequencyultrasound process and standard emulsification processes[J].Journal of Food Engineering, 2017, 194:109-118.
    [19] KACI M, MEZIANI S, ARAB-TEHRANY E, et al.Emulsificationby high frequency ultrasound using piezoelectric transducer:formation and stability of emulsifier free emulsion[J]. UltrasonicsSonochemistry, 2014, 21(3):1010-1017.
    [20] LEE C, LIN Y, LEE G. A droplet-based microfluidic systemcapable of droplet formation and manipulation[J]. Microfluidicsand Nanofluidics, 2009, 6(5):599-610.
    [21] SCHROEN K, BLIZNYUK O, MUIJLWIJK K, et al. Microfluidicemulsification devices:from micrometer insights to large-scalefood emulsion production[J]. Current Opinion in Food Science,2015, 3:33-40.
    [22] SEEMANN R, BRINKMANN M, PFOHL T, HERMINGHAUS S.Droplet based microfluidics[J]. Reports on Progress in Physics,2011, 1(75):16601.
    [23] ROBERGE D M, DUCRY L, BIELER N, et al. Microreactortechnology:a revolution for the fine chemical and pharmaceuticalindustries?[J]. Chemical Engineering&Technology, 2005, 28(3):318-323.
    [24] AJAEV V S, HOMSY G M. Modeling shapes and dynamics ofconfined bubbles[J]. Annual Review of Fluid Mechanics, 2006,38:277-307.
    [25] DARHUBER A A, TROIAN S M. Principles of microfluidicactuation by modulation of surface stresses[J]. Annual Review ofFluid Mechanics, 2005, 37(1):425-455.
    [26]骆广生,王凯,徐建鸿,等.微化工过程研究进展[J].中国科学:化学, 2014, 44(9):1404-1412.LUO GuangSheng, WANG Kai, XU JianHong, et al.Advances inresearch of microstructured chemical process[J]. SCIENTIASINICA Chimica, 2014, 44(9):1404-1412.
    [27] GüNTHER A, JENSEN K F.Multiphase microfluidics:from flowcharacteristics to chemical and materials synthesis[J]. Lab on aChip, 2006, 6(12):1487-1503.
    [28] RAYLEIGH L. On the instability of jets[J]. Proceedings of theLondon Mathematical Society, 1878, 1(1):4-13.
    [29] PLATEAU J A F.Statique expérimentale et théorique des liquidessoumis aux seules forces moléculaires[M]. Paris:Gauthier-Villars,1873.
    [30] AMBRAVANESWARAN B, SUBRAMANI H J, PHILLIPS S D, etal. Dripping-jetting transitions in a dripping faucet[J]. PhysicalReview Letters, 2004, 93(3):34501.
    [31] HARKINS W D, BROWN F E. The determination of surfacetension(free surface energy), and the weight of falling drops—thesurface tension of water and benzene by the capillary heightmethod[J]. Journal of the American Chemical Society, 1919, 41:499-524.
    [32] VINET B, GARANDET J P, CORTELLA L. Surface tensionmeasurements of refractory liquid metals by the pendant dropmethod under ultrahigh vacuum conditions:extension andcomments on Tate's law[J]. Journal of Applied Physics, 1993, 73(8):3830-3834.
    [33] CARDOSO V, DIAS O J. Rayleigh-Plateau and Gregory-Laflamme instabilities of black strings[J]. Physical Review Letters,2006, 96(18):181601.
    [34] GARSTECKI P, GITLIN I, DILUZIO W, et al. Formation ofmonodisperse bubbles in a microfluidic flow-focusing device[J].Applied Physics Letters, 2004, 85(13):2649-2651.
    [35] GANAN-CALVO A M, GORDILLO J M. Perfectly monodispersemicrobubbling by capillary flow focusing[J]. Physical ReviewLetters, 2001, 87(27):274501.
    [36] UTADA A S, FERNANDEZ-NIEVES A, STONE H A, et al.Dripping to jetting transitions in coflowing liquid streams[J].Physical Review Letters, 2007, 99(9):094502.
    [37] DE MENECH M, GARSTECKI P, JOUSSE F, et al. Transitionfrom squeezing to dripping in a microfluidic T-shaped junction[J].Journal of Fluid Mechanics, 2008, 595:141-161.
    [38] GARSTECKI P, FUERSTMAN M J, STONE H A, et al.Formationof droplets and bubbles in a microfluidic T-junction-scaling andmechanism of break-up[J]. Lab on a Chip, 2006, 6(3):437-446.
    [39] SU Y, KUIJPERS K, HESSEL V, et al.A convenient numbering-up strategy for the scale-up of gas-liquid photoredox catalysis inflow[J]. Reaction Chemistry&Engineering, 2016, 1(1):73-81.
    [40] SHEN Y, ABOLHASANI M, CHEN Y, et al. In-situ microfluidicstudy of biphasic nanocrystal ligand-exchange reactions using anoscillatory flow reactor[J]. Angewandte Chemie InternationalEdition, 2017, 56(51):16333-16337.
    [41] COURTNEY M, CHEN X, CHAN S, et al. Droplet microfluidicsystem with on-demand trapping and releasing of droplet for drugscreening applications[J]. Analytical Chemistry, 2016, 89(1):910-915.
    [42] WANG K, LU Y C, XU J H, et al. Liquid-liquid micro-dispersionin a double-pore T-shaped microfluidic device[J]. Microfluidicsand Nanofluidics, 2009, 6(4):557-564.
    [43] YIN S, YANG S, WANG C, et al. Magnetic-directed assemblyfrom Janus building blocks to multiplex molecular-analoguephotonic crystal structures[J]. Journal of the American ChemicalSociety, 2016, 138(2):566-573.
    [44] DU G, FANG Q, DEN TOONDER J M J. Microfluidics for cell-based high throughput screening platforms—A review[J].Analytica Chimica Acta,2016, 903:36-50.
    [45] LAN F, DEMAREE B, AHMED N, et al. Single-cell genomesequencing at ultra-high-throughput with microfluidic dropletbarcoding[J]. Nature Biotechnolog, 2017, 35(7):640-646.
    [46] CASTRO-HERNANDEZ E, GUNDABALA V, FERNANDEZ-NIEVES A, et al. Scaling the drop size in coflow experiments[J].New Journal of Physics, 2009, 11(7):75021.
    [47] CASTRO-HERNANDEZ E, VAN HOEVE W, LOHSE D, et al.Microbubble generation in a co-flow device operated in a newregime[J]. Lab on a Chip, 2011, 11(12):2023-2029.
    [48] XIA L, CUI Q, SUO X, et al. Efficient, selective, and reversibleSO2capture with highly crosslinked ionic microgels via a selectiveswelling mechanism[J]. Advanced Functional Materials, 2018, 28(13):1704292.
    [49] LI Y K, WANG K, LUO G S.Microdroplet generation with dilutesurfactant concentration in a modified T-junction device[J].Industrial&Engineering Chemistry Research, 2017, 56(42):12131-12138.
    [50] LI Y K, WANG K, XU J H, et al.A capillary-assembled micro-device for monodispersed small bubble and droplet generation[J].Chemical Engineering Journal, 2016, 293:182-188.
    [51] LI Y K, LIU G T, XU J H, et al. A microdevice for producingmonodispersed droplets under a jetting flow[J]. RSC Advances,2015, 5(35):27356-27364.
    [52] GORDILLO J M, CHENG Z, GANAN-CALVO A M, et al.A newdevice for the generation of microbubbles[J]. Physics of Fluids,2004, 16(8):2828-2834.
    [53] ANNA S L, BONTOUX N, STONE H A.Formation of dispersionsusing"flow focusing"in microchannels[J]. Applied PhysicsLetters, 2003, 82(3):364-366.
    [54] GORDILLO J M, GAáN-CALVO A M, PéREZ-SABORID M.Monodisperse microbubbling:absolute instabilities in coflowinggas-liquid jets[J]. Physics of Fluids, 2001, 13(12):3839-3842.
    [55] CHONG Z Z, TAN S H, GANAN-CALVO A M, et al. Active droplet generation in microfluidics[J]. Lab on a Chip, 2016, 16(1):35-58.
    [56] ZHU P, WANG L. Passive and active droplet generation withmicrofluidics:a review[J]. Lab on a Chip, 2016, 17(1):34-75.
    [57]付宇航,赵述芳,王文坦,等.多相/多组分LBM模型及其在微流体领域的应用[J].化工学报, 2014, 65(7):2535-2543.FU Y H, ZHAO S F, WANG W T, et al. Appliction of latticeBoltzmann method for simalation of Multiphase/Multicomponentflow in microfluidics[J]. CIESC J. 2014, 65(7):2535-2543.
    [58] W?RNER M. Numerical modeling of multiphase flows inmicrofluidics and micro process engineering:a review of methodsand applications[J]. Microfluidics and Nanofluidics, 2012, 12(6):841-886.
    [59] GUNSTENSEN A K, ROTHMAN D H, ZALESKI S, et al.LatticeBoltzmann model of immiscible fluids[J]. Physical Review A,1991, 43(8):4320-4327.
    [60] RIAUD A, WANG K, LUO G. A combined Lattice-Boltzmannmethod for the simulation of two-phase flows in microchannel[J].Chemical Engineering Science, 2013, 99:238-249.
    [61] HIRT C W, NICHOLS B D.Volume of fluid(VOF)method for thedynamics of free boundaries[J]. Journal of Computational Physics,1981, 1(39):201-225.
    [62] YANG X, JAMES A J, LOWENGRUB J, et al. An adaptivecoupled level-set/volume-of-fluid interface capturing method forunstructured triangular grids[J]. Journal of Computational Physics,2006, 217(2):364-394.
    [63] LV X, ZOU Q, ZHAO Y, et al. A novel coupled level set andvolume of fluid method for sharp interface capturing on 3Dtetrahedral grids[J]. Journal of Computational Physics, 2010, 229(7):2573-2604.
    [64] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobiformulations[J]. Journal of Computational Physics, 1988, 1(79):12-49.
    [65] HARTMANN D, MEINKE M, SCHR?DER W. Differentialequation based constrained reinitialization for level set methods[J]. Journal of Computational Physics, 2008, 227(14):6821-6845.
    [66] HARTMANN D, MEINKE M, SCHR?DER W. The constrainedreinitialization equation for level set methods[J]. Journal ofComputational Physics, 2010, 229(5):1514-1535.
    [67] MIN C. On reinitializing level set functions[J]. Journal ofComputational Physics, 2010, 229(8):2764-2772.
    [68] GHADIALI S N, GAVER D P.The influence of non-equilibriumsurfactant dynamics on the flow of a semi-infinite bubble in arigid cylindrical capillary tube[J]. Journal of Fluid Mechanics,2003, 478:165-196.
    [69] WANG K, LU Y C, XU J H, et al. Determination of dynamicinterfacial tension and its effect on droplet formation in the T-shaped microdispersion process[J]. Langmuir, 2009, 25(4):2153-2158.
    [70] BARET J, KLEINSCHMIDT F, EL HARRAK A, et al. Kineticaspects of emulsion stabilization by surfactants:a microfluidicanalysis[J]. Langmuir, 2009, 25(11):6088-6093.
    [71] EGGLETON C D, STEBE K J. An adsorption-desorption-controlled surfactant on a deforming droplet[J]. Journal of Colloidand Interface Science, 1998, 208(1):68-80.
    [72] FERRI J K, STEBE K J. Which surfactants reduce surface tensionfaster? A scaling argument for diffusion-controlled adsorption[J].Advances in Colloid and Interface Science, 2000, 85(1):61-97.
    [73] YANG L, LIU G, LUO G S, et al. Investigation of dynamic surface tension in gas-liquid absorption using a microflow interfacialtensiometer[J]. Reaction Chemistry&Engineering, 2017, 2(2):232-238.
    [74] LAN W, WANG C, GUO X, et al. Study on the transientinterfacial tension in a microfluidic droplet formation couplinginterphase mass transfer process[J]. AIChE Journal, 2016, 62(7):2542-2549.
    [75] WANG K, ZHANG L, ZHANG W, et al.Mass-transfer-controlleddynamic interfacial tension in microfluidic emulsificationprocesses[J]. Langmuir, 2016, 32(13):3174-3185.
    [76] CHANG C, FRANSES E I.Adsorption dynamics of surfactants atthe air/water interface:a critical review of mathematical models,data, and mechanisms[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1995, 100:1-45.
    [77] VAN DER GRAAF S, SCHRO?N C G P H, VAN DER SMAN RG M, et al. Influence of dynamic interfacial tension on dropletformation during membrane emulsification[J]. Journal of Colloidand Interface Science, 2004, 277(2):456-463.
    [78] XU J H, DONG P F, ZHAO H, et al. The dynamic effects ofsurfactants on droplet formation in coaxial microfluidic devices[J].Langmuir, 2012, 28(25):9250-9258.
    [79] WANG X, RIAUD A, WANG K, et al. Pressure drop-baseddetermination of dynamic interfacial tension of droplet generationprocess in T-junction microchannel[J]. Microfluidics andNanofluidics, 2015, 18(3):503-512.
    [80] EGGLETON C D, TSAI T M, STEBE K J. Tip streaming from adrop in the presence of surfactants[J]. Physical Review Letters,2001, 87(4):48302.
    [81] ANNA S L, MAYER H C. Microscale tipstreaming in amicrofluidic flow focusing device[J]. Physics of Fluids, 2006, 18(12):121512.
    [82] JOSEPHIDES D N, SAJJADI S. Increased drop formationfrequency via reduction of surfactant interactions in flow-focusingmicrofluidic devices[J]. Langmuir, 2015, 31(3):1218-1224.
    [83] FERNANDEZ J M, HOMSY G M.Chemical reaction-driven tip-streaming phenomena in a pendant drop[J]. Physics of Fluids,2004, 16(7):2548-2555.
    [84] WARD T, FAIVRE M, STONE H A. Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction[J]. Langmuir, 2010, 26(12):9233-9239.
    [85] JEONG W, LIM J, CHOI J, et al. Controlled generation ofsubmicron emulsion droplets via highly stable tip-streaming modein microfluidic devices[J]. Lab on a Chip,2012, 12(8):1446-1453.
    [86] MOYLE T M, WALKER L M, ANNA S L. Controlling threadformation during tip-streaming through an active feedback controlloop[J]. Lab on a Chip,2013, 13(23):4534-4541.
    [87] KIM H, MULLER K, SHARDT O, et al.Solutal Marangoni flows ofmiscible liquids drive transport without surface contamination[J].Nature Physic,2017, 13(11):1105.
    [88] WANG K, XU J, LIU G, et al. Role of interfacial force onmultiphase microflow—an important meso-scientific issue[J].Advances in Chemical Engineering,2015, 47:163-191.
    [89] HUAWEI S, YANGCHENG Lü, KAI W, et al. An experimentalstudy of liquid-liquid microflow pattern maps accompanied withmass transfer[J]. Chinese Journal of Chemical Engineering,2012,20(1):18-26.
    [90]张吉松,刘国涛,王凯,等.微通道内传递对液液分散过程的影响规律[J].化工学报,2015, 66(8):2940-2946.ZHANG Jisong, LIU Guotao, WANG Kai, et al.Effect of transferon liquid-liquid dispersion in microchannels[J]. CIESC Journal,2015, 66(8):2940-2946.
    [91] DESHPANDE J B, KULKARNI A A. Effect of interfacial masstransfer on the dispersion in segmented flow in straight capillaries[J]. AIChE Journal,2015, 61(12):4294-4308.
    [92] WEGENER M, PASCHEDAG A R.Mass transfer enhancement atdeformable droplets due to Marangoni convection[J]. InternationalJournal of Multiphase Flow, 2011, 37(1):76-83.
    [93] LU P, WANG Z, YANG C, et al.Experimental investigation andnumerical simulation of mass transfer during drop formation[J].Chemical Engineering Science,2010, 65(20):5517-5526.
    [94] VLADISAVLJEVI?G T, EKANEM E E, ZHANG Z, et al.Long-term stability of droplet production by microchannel(step)emulsification in microfluidic silicon chips with large number ofterraced microchannels[J]. Chemical Engineering Journal,2018,333:380-391.
    [95] ARSHADY R. Suspension, emulsion, and dispersionpolymerization:a methodological survey[J]. Colloid and PolymerScience. 1992, 270(8):717-732.
    [96] SAGGESE C, FERRARIO S, CAMACHO J, et al. Kineticmodeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame[J]. Combustion and Flame,2015, 162(9):3356-3369.
    [97] HENCH L L, WEST J K. The sol-gel process[J]. ChemicalReviews, 1990, 90(1):33-72.
    [98] KENDALL K. The impossibility of comminuting small particles bycompression[J]. Nature, 1978, 272(5655):710-711.
    [99] ELBERT D L.Liquid-liquid two-phase systems for the productionof porous hydrogels and hydrogel microspheres for biomedicalapplications:a tutorial review[J]. Acta Biomaterialia, 2011, 7(1):31-56.
    [100] DONG P, XU J, ZHAO H, et al. Preparation of 10μm scalemonodispersed particles by jetting flow in coaxial microfluidicdevices[J]. Chemical Engineering Journal, 2013, 214:106-111.
    [101] GUO S, YAO T, JI X, et al.Versatile preparation of nonsphericalmultiple hydrogel core PAM PEG emulsions and hierarchicalhydrogel microarchitectures[J]. Angewandte Chemie InternationalEdition, 2014, 53(29):7504-7509.
    [102] LIU H, QIAN X, WU Z, et al. Microfluidic synthesis of QD-encoded PEGDA microspheres for suspension assay[J]. Journal ofMaterials Chemistry B, 2016, 3(4):482-488.
    [103] KIM J, UTADA A S, FERNáNDEZ-NIEVES A, et al.Fabricationof monodisperse gel shells and functional microgels inmicrofluidic devices[J]. Angewandte Chemie International Edition,2007, 46(11):1819-1822.
    [104] CHAU M, ABOLHASANI M, THéRIEN-AUBIN H, et al.Microfluidic generation of composite biopolymer microgels withtunable compositions and mechanical properties[J].Biomacromolecules, 2014, 15(7):2419-2425.
    [105] TAN W H, TAKEUCHI S. Monodisperse alginate hydrogelmicrobeads for cell encapsulation[J]. Advanced Materials, 2007,19(18):2696-2701.
    [106] HUNGL,TEHS,JESTERJ,etal.PLGAmicro/nanosphere synthesisby droplet microfluidic solvent evaporation and extractionapproaches[J]. Lab on a Chip, 2010, 10(14):1820-1825.
    [107] WATANABE T, ONO T, KIMURA Y. Continuous fabrication ofmonodisperse polylactide microspheres by droplet-to-particletechnology using microfluidic emulsification and emulsion-solvent diffusion[J]. Soft Matter, 2011, 7(21):9894-9897./