基于工况风险评估的叉车门架多工况拓扑优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-working Condition Topology Optimization of Forklift Door Frames Based on Working Condition Risk Assessments
  • 作者:邹坤 ; 侯亮 ; 卜祥建 ; 方奕凯
  • 英文作者:ZOU Kun;HOU Liang;BU Xiangjian;FANG Yikai;School of Aerospace Engineering,Xiamen University;
  • 关键词:叉车门架 ; 工况风险指标 ; 权重系数 ; 折中规划法 ; 多工况拓扑优化
  • 英文关键词:forklift door frame;;working condition risk index(RI);;weighting coefficient;;compromise programming approach;;multi-working condition topology optimization
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:厦门大学航空航天学院;
  • 出版日期:2019-03-06 14:51
  • 出版单位:中国机械工程
  • 年:2019
  • 期:v.30;No.509
  • 基金:福建省科技重大专项(2016HZ0001-9)
  • 语种:中文;
  • 页:ZGJX201905010
  • 页数:10
  • CN:05
  • ISSN:42-1294/TH
  • 分类号:68-77
摘要
以某3T型内燃叉车的标准门架为例,实现了典型工况下门架系统的整体非线性有限元分析;基于工况数据(工作时长、结构应力及形变位移),提出了工况风险评估方法及工况风险指标(RI)的概念;依据工况风险指标,提出了一种分配多工况拓扑优化权重系数的方法;采用折中规划法,以多工况下门架加权柔度最小为目标函数对门架结构进行拓扑优化;根据优化结果对门架结构进行改进设计,并进行了有限元分析。研究结果表明:风险评估法较传统平均分配法能得到更优的目标值;与原门架结构相比,新门架结构在3种典型工况下的最大应力分别减小10.05%、10.25%和1.58%,最大位移分别减小13.17%、12.93%和8.28%,质量减小7 kg。
        The standard door frame of a 3 T internal-combustion forklift was taken as an example, the global nonlinear finite element analyses of the door frame systems were realized under the typical conditions. Based on working condition data(work durations, structure stresses and deformation displacements), the working condition risk assessment method and the concept of working condition RI were put forward. According to the working condition RI, an objective weighting coefficient distribution method was proposed for multi-working condition topology optimization. Using the compromise programming approach, taking the door frames weighted flexibility minimum as the goal function under the multi-working conditions, the topology optimization of door frames was realized. According to the optimization results, the structures of the door frames were redesigned, and the finite element analyses were carried out. The results show that compared with the traditional average distribution method, the risk assessment method may get better target values. Compared with the original structures of door frames, the maximum stresses of the new door frames under three typical conditions are reduced by 10.05%, 10.25% and 1.58% respectively, the maximum displacements are reduced by 13.17%, 12.93% and 8.28% respectively, and the mass is reduced by 7 kg.
引文
[1] 尹辉俊, 王祖皓, 洪晓莉,等. 叉车门架系统中滚轮所受作用力的计算分析[J]. 机械设计与制造, 2015(5): 80-82.YIN Huijun, WANG Zuhao, HONG Xiaoli,et al. The Calculation and Analysis of the Force on the Wheels in the Forklift Door Frame System [J]. Machinery Design & Manufacture, 2015(5): 80-82.
    [2] 徐杰君. 叉车门架的有限元分析及动态仿真分析[D]. 西安:西北农林科技大学, 2009.XU Jiejun. The Finite Element Anslysis and Dynamic Simulation Anslysis of the Forklift Mask [D]. Xi'an: Northwest Agriculture and Forestry University, 2009.
    [3] 彭振. 中吨位叉车门架的有限元分析与结构优化[D]. 锦州:辽宁工业大学, 2014.PENG Zhen. Middle Tonnage Forklift Truck Door Frame Finite Element Analysis and Structure Optimization to Improve[D].Jinzhou: Liaoning University of Technology, 2014.
    [4] 许华旸, 关立文, 王立平,等. 惯性载荷下飞行模拟器大臂结构的拓扑优化[J]. 机械工程学报, 2014, 50(9): 14-23.XU Huayang, GUAN Liwen, WANG Liping, et al. Topology Optimization for the Arm of Flight Simulator under Inertial Loads[J]. Journal of Mechanical Engineering, 2014, 50(9): 14-23.
    [5] 魏静, 李震, 孙伟,等. 基于SIMP及应变能理论的高速动车齿轮箱结构优化[J]. 机械强度, 2011, 33(4): 558-564.WEI Jing, LI Zhen, SUN Wei, et al. Shape and Topology Optimization for Gear Box of High Speedtrain Based on SIMP Model and Strain Energy Theory[J]. Journal of Mechanical Strength, 2011, 33(4): 558-564.
    [6] 范文杰, 范子杰, 桂良进,等. 多工况下客车车架结构多刚度拓扑优化设计研究[J]. 汽车工程, 2008, 30(6): 531-533.FAN Wenjie, FAN Zijie, GUI Liangjin, et al. Multi-stiffness Topology Optimization of Bus Frame with Multiple Loading Conditions[J]. Automotive Engineering,2008, 30(6): 531-533.
    [7] 兰凤崇, 赖番结, 陈吉清,等. 考虑动态特性的多工况车身结构拓扑优化研究[J]. 机械工程学报, 2014, 50(20): 122-128.LAN Fengchong, LAI Fanjie, CHEN Jiqing, et al. Multi-case Topology Optimization of Body Structure Considering Dynamic Characteristic[J]. Journal of Mechanical Engineering, 2014, 50(20): 122-128.
    [8] 兰凤崇, 张浩锴, 王家豪,等. 汽车转向节拓扑优化方法研究及应用[J]. 汽车工程, 2014, 36(4): 464-468.LAN Fengchong, ZHANG Haokai, WANG Jiahao, et al. Study and Application of Topology Optimization Technique for Vehicle Steering Knuckles[J]. Automotive Engineering, 2014, 36(4): 464-468.
    [9] 范文杰, 范子杰, 苏瑞意. 汽车车架结构多目标拓扑优化方法研究[J]. 中国机械工程, 2008, 19(12): 1505-1508.FAN Wenjie, FAN Zijie, SU Ruiyi. Research on Multi-objective Topology Optimization on Bus Chassis Frame[J]. China Mechanical Engineering, 2008, 19(12): 1505-1508.
    [10] 张兰春, 赵清海, 张洪信,等. 汽车动力总成悬置支架的多目标拓扑优化[J]. 汽车工程, 2017, 39(5): 551-555.ZHANG Lanchun, ZHAO Qinghai, ZHANG Hongxin, et al. Multi-objective Topology Optimization for the Mount Bracket of Vehicle Powertrain[J]. Automotive Engineering, 2017, 39(5): 551-555.
    [11] 谢伦杰, 张维刚, 常伟波,等. 基于SIMP理论的电动汽车车身多目标拓扑优化[J]. 汽车工程, 2013, 35(7): 583-587.XIE Lunjie, ZHANG Weigang, CHANG Weibo, et al. Multi-objective Topology Optimization for Electric Car Body Based on SIMP Theory[J]. Automotive Engineering, 2013, 35(7): 583-587.
    [12] 高云凯, 王婧人, 汪翼. 基于正交试验的大型客车车身结构多工况拓扑优化研究[J]. 汽车技术, 2011(11): 16-19.GAO Yunkai, WANG Jingren, WANG Yi. Multi-case Topology Optimization of Bus Body Structure Based on Orthogonal Test[J]. Automobile Technology, 2011(11): 16-19.
    [13] 于少春. 变速器齿轮齿面接触分析建模与仿真[D]. 长春:吉林大学, 2007.YU Shaochun. Modeling and Simulation for Tooth Face Contact Analysis of Transmission Gears[D]. Changchun: Jilin University, 2007.
    [14] 石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 北京:机械工业出版社, 2016.SHI Yiping, ZHOU Yurong. ABAQUS Finite Element Analysis Example Detailed[M]. Beijing: Machinery Industry Press, 2016.
    [15] BENDS?E M P, SIGMUND O. Material Interpolation Schemes in Topology Optimization[J]. Archive of Applied Mechanics, 1999,69(9/10): 635-654.
    [16] 祝小元, 方宗德, 申闪闪,等. 汽车悬架控制臂的多目标拓扑优化[J]. 汽车工程, 2011, 33(2): 138-141.ZHU Xiaoyuan, FANG Zongde, SHEN Shanshan, et al. Multi-objective Topology Optimization for the Control Arm of Vehicle Suspension[J]. Automotive Engineering,2011, 33(2): 138-141.
    [17] 冯剑军, 谭援强. 刚性圆柱和半平面之间摩擦滑动接触中的应力计算[J]. 工程力学, 2010, 27(8): 40-47.FENG Jianjun, TAN Yuanqiang. The Stress Calculation in the Frictionally Slipping Contact between a Rigid Cylinder and a Half Plane[J]. Engineering Mechanics, 2010, 27(8): 40-47.
    [18] 濮良贵, 陈国定, 吴立言. 机械设计[M]. 北京:高等教育出版社, 2013.PU Lianggui, CHEN Guoding, WU Liyan. Mechanical Design [M]. Beijing: Higher Education Press, 2013.
    [19] WANG S, HOU L, LEE J, et al. Evaluating Wheel Loader Operating Conditions Based on Radar Chart[J]. Automation in Construction, 2017, 84: 42-49.
    [20] 邱瑞斌, 雷飞, 陈园,等. 基于权重比的车架多工况拓扑优化方法研究[J]. 工程设计学报, 2016, 23(5): 444-452.QIU Ruibin, LEI Fei, CHEN Yuan, et al. Research on the Method of Multi-case Topology Optimization of Frame Structure Based on the Weight Ratio[J]. Chinese Journal of Engineering Design, 2016, 23(5): 444-452.