固体推进剂速度耦合响应函数测量实验方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Experimental Method for Measuring Velocity-Coupled Response Function of Solid Propellant
  • 作者:金秉宁 ; 刘佩进 ; Hichem ; Rezaiguia ; 魏少娟 ; 徐冠宇
  • 英文作者:JIN Bing-ning;LIU Pei-jin;Hichem Rezaiguia;WEI Shao-juan;XU Guan-yu;Science and Technology on Combustion ,Internal Flow and Thermal–Structure Laboratory,Northwestern Polytechnical University;
  • 关键词:非线性燃烧不稳定 ; 固体推进 ; T型燃烧器技术 ; 燃烧响应 ; 速度耦合响应函数
  • 英文关键词:Nonlinear combustion instability;;Solid propellant;;T-burner technology;;Combustion response;;Velocity-coupled response function
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西北工业大学燃烧热结构与内流场重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.259
  • 基金:国家自然科学基金(51706186)
  • 语种:中文;
  • 页:TJJS201901023
  • 页数:7
  • CN:01
  • ISSN:11-1813/V
  • 分类号:198-204
摘要
为获得固体推进剂速度耦合响应特性,基于T型燃烧器测量技术,建立了一种测量含铝复合推进剂速度耦合响应函数的实验方法,并在工作压强为6.5MPa和振荡频率约为175Hz条件下,开展了响应特性实验研究。实验结果表明:速度耦合与压强耦合有明显的不同,压强耦合在整个振荡区域内均表现出增益作用,而速度耦合在不同振荡区域内可表现出增益作用,也可以表现出抑制作用;在本文的工况参数条件下,速度耦合响应函数值远大于压强耦合响应函数值。在固体火箭发动机非线性燃烧不稳定中,速度耦合响应是不可忽略的重要影响因素。本文所建立的实验方法能在测量速度耦合响应函数的同时获得压强耦合响应函数,可更好地分析固体推进剂的燃烧响应特性。因此,该方法为分析固体火箭发动机非线性燃烧不稳定问题提供了重要的实验手段。
        In order to obtain the characteristic of the velocity coupled response function,a new method of measuring the velocity-coupling response of aluminum solid propellants by using T burner is proposed,and through which the velocity-coupling response characteristics are examined when oscillation frequency is set about175 Hz and pressure is set about 6.5 MPa.The results show that,firstly,the characteristic of the velocity-coupling response is obviously different from the pressure-coupling response,and the value of the pressure-coupling is positive in the whole acoustic field in the chamber,but the value of the velocity-coupling could be either positive or negative in the acoustic field.Secondly,under the test conditions,the velocity-coupling response value is much larger than the pressure-coupling response value.Thus,for the nonlinear combustion instability in the solid rocket motor,the velocity-coupling response plays an important role that cannot be neglected.Finally,this method can be used to measure the coupling response function of both velocity and pressure at same time,which can be better used to analyze the combustion response characteristics of the aluminum solid propellant.Thus,this method can provide an important experimental technique for the analysis of the nonlinear combustion instability problem of solid rocket motor.
引文
[1]Blomshield F.Lessons Learned in Solid Rocket Combustion Instability[R].AIAA 2007-5803.
    [2]谢蔚民,贺武生.固体火箭发动机燃烧不稳定性预估[J].推进技术,1991,12(2):40-45.(XIE Wei-min,HE Wu-sheng.Prediction of Combustion Instability in Solid Rocket Engine[J].Journal of Propulsion Technology,1991,12(2):40-45.)
    [3]Casalis G,Boyer G,Radenac E.Some Recent Advances in the Instabilities Occurring in Long Solid Rocket Motors[R].AIAA 2011-5642.
    [4]Shusser M C,Culick F E,Cohen N S.Analytical Solution for Pressure-Coupled Combustion Response Functions of Composite Solid Propellants[J].Journal of Propulsion and Power,2008,24(5):1058-1067.
    [5]刘佩进,金秉宁,魏祥庚,等.固体推进剂非线性压强耦合响应特性分析[J].推进技术,2016,37(9):1601-1608.(LIU Pei-jin,JIN Bing-ning,WEIXiang-geng,et al,Analysis of Nonlinear Pressure Coupled Response Function of Solid Propellant[J].Journal of Propulsion Technology,2016,37(9):1601-1608.)
    [6]Jackson T L.Modeling of Heterogeneous Propellant Combustion:A Survey[J].AIAA Journal,2012,50(5):993-1006.
    [7]Malhotra S,Flandro G,Malhotra S,et al.On Nonlinear Combustion Instability[R].AIAA 97-3250.
    [8]Blomshield F S,Mathes H B,Crump J E,et al.Nonlinear Stability Testing of Full-Scale Tactical Motors[J].Journal of Propulsion and Power,1997,13(3):356-366.
    [9]Flandro G A,Fischbach S R,Majdalani J.Nonlinear Rocket Motor Stability Prediction:Limit Amplitude,Triggering,and Mean Pressure Shift[J].Physics of Fluids,2007,19(9).
    [10]Culick F E C.Stability of Longitudinal Oscillations with Pressure and Velocity Coupling in a Solid Propellant Rocket[J].Combustion Science and Technology,1970,2(4):179-201.
    [11]McClure F T.Erosion Mechanism for Nonlinear Instability in the Axial Modes of Solid Propellant Rocket Motors[J].ARS Journal,1962,32(3):374-378.
    [12]Bird J F,Hart R W,McClure F T.Finite Acoustic Oscillations and Erosive Burning in Solid Fuel Rockets[J].AIAA Journal,1965,3(12):2248-2256.
    [13]Yang V,Hsieh K C.Velocity-Coupled Flow Oscillations in a Simulated Solid-Propellant Rocket Environment[R].AIAA 88-0543.
    [14]Cai W,Thakre P,Yang V.A Model of AP/HTPB Composite Propellant Combustion in Rocket-Motor Environments[J].Combustion Science and Technology,2008,180(12):2143-2169.
    [15]Stepp E E.Effect of Pressure and Velocity Coupling on Low-Frequency Instability[J].AIAA Journal,1967,5(5):945-948.
    [16]Brown R S R C W,Kelly V L.Rotating Valve for Velocity-Coupled Combustion Response Measurements[J].Journal of Spacecraft and Rockets,1979,19(5):437-444.
    [17]吕振中.固体火箭发动机不稳定燃烧的速度耦合模型的研究[J].推进技术,1995,16(6):1-10.(LYUZhen-zhong.An Investigation on Velocity Coupling Model for Unstable Combustion in Solid Rocket Motors[J].Journal of Propulsion Technology,1995,16(6):1-10.)
    [18]LYU Z Z.Velocity Coupling Experiments of Solid Propellant Acoustic Oscillating Combustion[C].New York:20th Joint Propulsion Conference,1984.
    [19]杜功焕,朱哲民.声学基础[M].南京:南京大学出版社,2012.