三塔双层悬索桥中塔结构选型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Structure Selection of Three-tower Suspension Bridge with Double Deck Girder
  • 作者:叶雨清 ; 王昌将 ; 马碧波
  • 英文作者:YE Yu-qing;WANG Chang-jiang;MA Bi-bo;Zhejiang Provincial Institute of Communications Planning,Design & Research;
  • 关键词:桥梁工程 ; 多塔悬索桥 ; 中间桥塔 ; 主缆抗滑移 ; 研究
  • 英文关键词:bridge engineering;;multi tower suspension bridge;;middle tower;;anti-slipping of main cable;;study
  • 中文刊名:GLGL
  • 英文刊名:Highway
  • 机构:浙江省交通规划设计研究院;
  • 出版日期:2018-11-14 09:18
  • 出版单位:公路
  • 年:2018
  • 期:v.63
  • 语种:中文;
  • 页:GLGL201811021
  • 页数:8
  • CN:11
  • ISSN:11-1668/U
  • 分类号:125-132
摘要
中间桥塔结构选型是多塔悬索桥设计的关键技术问题,以世界首座三塔双层悬索桥——温州瓯江北口大桥为依托工程,分别对采用A形混凝土中塔、I形钢-混组合中塔及人字形钢结构中塔时的中塔偏位、主跨挠度、主缆抗滑安全性及经济性等关键控制指标进行了综合研究。研究表明,在主缆与鞍座间的名义摩擦系数取为0.2时,I形钢-混组合中塔及人字形全钢中塔可满足中塔结构受力和主缆抗滑移安全系数达到2.0的要求;在主缆与鞍座间的名义摩擦系数取为0.3时,A形混凝土中塔可满足中塔结构受力和主缆抗滑移安全系数达到2.0的要求,并具有明显的经济性。
        The selection of the mid-tower structure is the key technical problems of design of multitower suspension bridge,based on the world's first three-tower suspension bridge with double deck girder-Oujiang River North Bridge in Wenzhou,the deflection of the middle tower,the main span deflection,the anti-slipping safety factor between main cable and saddle of mid-tower and the economy of the bridge are analyzed when the A-shaped reinforced concrete tower,I-shaped steel concrete mixing tower and upside-down Y-shaped steel tower are adopted respectively.The results show that the I-shaped steel concrete mixing tower and upside-down Y-shaped steel tower can meet the requests that the structural force bearing of central tower and the anti-slipping safety factor of main cable can satisfy 2.0 when the nominal frictional coefficient between main cable and saddle is 0.2;and when the nominal frictional coefficient between main cable and saddle is 0.3,A-shaped concrete middle tower can meet above mentioned requirement and with obvious economic benefits.
引文
[1]THAI H T,CHOI D H.Advanced analysis of multi-span suspension bridges[J].Journal of Constructional Steel Research,2013,90(5):29-41.
    [2]沈锐利,张兴标,彭丹.多塔悬索桥结构变形的实用计算方法[J].中国公路学报,2016,29(6):207-213.
    [3]GIMSING N J.CableSupported Bridges:Concept and Design[M].New York:John Wiley&Sons,2012.
    [4]张劲泉,曲兆乐,宋建永,等.多塔连跨悬索桥综述[J].公路交通科技,2011,(9):30-52.
    [5]TAKENA K,SASAKI M,HATA K,et al.Slip Behavior of Cable against Saddle in Suspension Bridges[J].Journal of Structural Engineering,1992,118(2):377-391.
    [6]HASEGAWA K,KOJIMA H,SASAKI M,et al.Frictional Resistance between Cable and Saddle E-quipped with Friction Plate[J].Journal of Structural Engineering,1995,121(1):1-14.
    [7]周凌远,李乔.缆索与鞍座间的摩擦特性[J].兰州理工大学学报,2011,37(2):117-121.
    [8]张清华,李乔.悬索桥主缆与鞍座摩擦特性试验研究[J].土木工程学报,2013,(4):85-92.
    [9]张清华,李乔,周凌远.悬索桥主缆与鞍座摩擦特性理论分析方法[J].中国公路学报,2014,(1):44-50.
    [10]Zhang Q H,Cheng Z Y,Cui C,et al.Analytical Model for Frictional Resistance between Cable and Saddle of Suspension Bridges Equipped with Vertical Friction Plates[J].Journal of Bridge Engineering,2016,22(1):1-12.
    [11]POPOV V L.Contact Mechanics and Friction:Physical Principles and Applications[M].Berlin:Springer,2010.
    [12]布尚.葛世荣,译.摩擦学导论[M].北京:机械工业出版社,2007.
    [13]孟凡超.悬索桥[M].北京:人民交通出版社,2011.
    [14]JTG/T D65-05-2015公路悬索桥设计规范[S].