吊环十字支撑类动作对人体背阔肌、斜方肌、肱三头肌、大圆肌和三角肌参与程度和控制能力及主要肌群贡献率分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Participation degree and control ability of human latissimus dorsi,trapezius,triceps,musculus and deltoid during cross support of hand ring: analysis on contribution rate of major muscle group
  • 作者:兰庆士
  • 英文作者:Lan Qingshi;Zhengzhou University of Science and Technology;
  • 关键词:运动医学 ; 肌电描记术 ; ; 组织工程 ; 吊环 ; 十字支撑 ; 时间 ; 角度 ; 肌肉贡献率 ; 组织构建
  • 英文关键词:,Sports Medicine;;Electromyography;;Muscles;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:郑州科技学院;
  • 出版日期:2018-11-01 09:00
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.860
  • 基金:郑州市社科联项目(ZSLX2014391)~~
  • 语种:中文;
  • 页:XDKF201903008
  • 页数:6
  • CN:03
  • ISSN:21-1581/R
  • 分类号:39-44
摘要
背景:当前研究缺乏大样本优秀与一般吊环运动员十字支撑类难度动作的运动学和表面肌电的比较。目的:探讨优秀吊环运动员十字支撑类动作时间、角度及主要肌群表面肌电(s EMG)特点,比较优秀与一般运动员间差异。方法:2台高速摄像机和MegawinT8表面肌电分析仪同步采集了优秀组(n=13,为优秀和一级运动员)和一般组(n=14,为二级运动员)正十字、倒十字和水平十字支撑的运动学(时间和角度)和表面肌电(采集斜方肌、背阔肌、大圆肌、三角肌、肱三头肌、胸大肌、前锯肌和肱二头肌)数据。结果与结论:①相比一级组,优秀组正十字支撑的动作时间增大58.9%(P<0.01),左、右肘角分别增大16.4%和17.3%(P <0.05),左、右腕肩连线与水平面夹角分别减小46.9%和49.2%(P <0.01)。背阔肌、大圆肌和三角肌贡献率分别增加28.8%、108.1%(P <0.01)和5.8%(P <0.05),肱三头肌、胸大肌和肱二头肌贡献率分别减小47.8%(P <0.01)、16.2%和16.7%(P <0.05);②相比一级组,倒十字支撑的动作时间增大81.6%(P <0.01)。斜方肌、大圆肌和肱三头肌贡献率分别增大25.6%、128.6%和175.0%(P <0.01),前锯肌和肱二头肌贡献率分别减小17.9%和20.7%(P <0.01);③水平十字支撑的动作时间、髋角和膝角分别增大59.9%(P <0.01)、9.0%和6.9%(P <0.05),左右腕肩夹角、躯干夹角分别减小20.4%、22.1%和31.1%(P <0.01)。斜方肌、背阔肌、大圆肌贡献率分别增大14.0%(P <0.05)、508.3%和18.2%(P <0.01),前锯肌贡献率减小12.5%(P <0.05);④结果提示,加强十字支撑类动作时间控制和身体姿势角度到位的意识,强化背阔肌、斜方肌、肱三头肌、大圆肌和三角肌参与程度和控制能力,有利于更好完成吊环十字支撑类动作。
        BACKGROUND: There is a lack of large-sampled comparative study on the kinematics and surface electromyography(sEMG) between elite and general hand ring athletes undergoing cross bracing. OBJECTIVE: To explore the time and angle of cross support and the sEMG of main muscle groups in elite hand ring athletes, and to compare the differences between elite and general athletes. METHODS: Two high-speed cameras and MegawinT8 sEMG analyzer were used to collect the measurements in elite group(n=13, elite and first-level athletes) and general group(n=14, second-level athletes). The kinematics(time and angle) of positive/inverted/horizontal cross support and sEMG of trapezius, latissimus dorsi, teres major, deltoid, triceps brachii, pectoralis major, serratus anterior and biceps brachii were detected. RESULTS AND CONCLUSION: Compared with the general group, in the elite group, the positive cross support time increased by 58.9%(P < 0.01), left and right elbow angle was increased by 16.4% and 17.3%(P < 0.05), the angle between the left and right shoulder line and a horizontal surface was decreased by 46.9% and 49.2%(P < 0.01). The contribution rate of latissimus dorsi, teres major, and deltoid was increased by 28.8%, 108.1%(P < 0.01) and 5.8%(P < 0.05), respectively. The contribution rate of triceps brachii, pectoralis major, and biceps brachii was decreased by 47.8%(P < 0.01), 16.2% and 16.7%(P < 0.05). Compared with the general group, in the elite group, the inverted cross support time was increased by 81.6%(P < 0.01). The contribution rate of trapezius, teres major and triceps brachii was increased by 25.6%, 128.6% and 175.0%(P < 0.01), respectively. The contribution rate of serratus anterior and biceps brachii was reduced by 17.9% and 20.7%(P < 0.01). The horizontal cross support time, hip and knee angles were increased by 59.9%(P < 0.01), 9.0% and 6.9%(P < 0.05). The left and right wrist shoulder angles, and trunk angle was decreased by 20.4%, 22.1% and 31.1%(P < 0.01). The contribution rate of trapezius, latissimus dorsi and teres major was increased by 14.0%(P < 0.05), 508.3% and 18.2%(P < 0.01). The contribution rate of anterior serratus was decreased by 12.5%(P < 0.05). These findings indicate that control of the cross support time and the angle of the body position, and strengthening the participation degree and control ability of the latissimus dorsi, trapezius, triceps, musculus and deltoid contribute to completing the hand ring better.
引文
[1]周曰智,邵斌. 2013-2015年世界体操优秀运动员吊环动作发展动态分析[J].山东体育学院学报,2016, 32(3):73-78.
    [2]乔福峰.26-29届奥运周期男子体操规则变化与体操技术发展研究[D].北京:北京体育大学,2016.
    [3]何俊.里约奥运会中国体操队失利分析及备战东京奥运会对策[J].体育科学, 2017, 37(4):87-96.
    [4]吴翔.第45届世界体操锦标赛男子吊环成套动作的研究[J].南京体育学院学报(自然科学版),2016, 15(4):83-87.
    [5]李思民,于涛.第38届世界体操锦标赛男子吊环成套动作编排特点与趋势研究[J].天津体育学院学报,2006, 21(4):299-302.
    [6]宋倩,彭莉,秦渝珂,等.基于步态周期下跨栏运动员步态及下肢表面肌电特征分析[J].中国组织工程研究, 2017, 21(24):3851-3857.
    [7]张肃,高峰.膝关节最大和次最大等速运动至疲劳过程中主动肌与拮抗肌肌电特征分析[J].中国组织工程研究,2015,19(33):5344-5350.
    [8]邹静.李文寿.吊环十字支撑动作的力学和肌电研究[J].中国体育科技,1999,35(9):36-39.
    [9]苏阳.吊环慢用力动作肌肉用力特点研究[D].南京:南京体育学院, 2013.
    [10]Carrara P,Exell T,Serr?o J,et al.Asymmetry analysis of cross on gymnastics rings[C].The International Conference on Biomechanics in Sports.2015.
    [11]Dallas G,Mavidis A,Chairopoulou C.Influence of angle of view on judges’ evaluations of inverted cross in men’s rings.Percept Mot Skills. 2011 Feb;112(1):1091-1021.
    [12]Bernasconi SM,Tordi NR,Parratte BM,et al.Can shoulder muscle coordination during the support scale at ring height be replicated during training exercises in gymnastics. J Strength Cond Res. 2009;23(8):2381-2388.
    [13]程亮.邹凯单杠并腿马凯洛夫动作的运动学分析[J].山东体育学院学报,2014,30(3):87-91.
    [14]程亮,常书婉.邹凯单杠中穿上转体360°经反握倒立动作的运动学分析[J].南京体育学院学报(自然科学版), 2012,11(4):23-26.
    [15]Eskes M,van Alphen MJ,Smeele LE,et al.Predicting 3D lip movement using facial sEMG:a first step towards estimating functional and aesthetic outcome of oral cancer surgery.Med Biol Eng Comput.2017;55(4):573-583.
    [16]Gorostiaga EM,González-Izal M,Malanda A,et al.Blood lactate and sEMG at different knee angles during fatiguing leg press exercise.Eur J Appl Physiol. 2012;112(4):1349-1358.
    [17]张丹.陈一冰吊环以力量静止姿势结尾动作的运动学分析[D].成都:成都体育学院, 2013.