不同加氢改质催化剂对环烷基柴油改质的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on hydrotreating naphthenic base diesel over different catalysts
  • 作者:陈光 ; 吴子明 ; 李扬 ; 孙洪江 ; 关明华 ; 范思强
  • 英文作者:CHEN Guang;WU Zi-ming;LI Yang;SUN Hong-jiang;GUAN Ming-hua;FAN Si-qiang;Dalian Research Institute of Petroleum and Petrochemicals,Sinopec Corp.;
  • 关键词:环烷基柴油 ; 加氢改质 ; 催化剂 ; 差异性
  • 英文关键词:naphthenic base diesel;;hydro-upgrading;;catalyst;;difference
  • 中文刊名:XDHG
  • 英文刊名:Modern Chemical Industry
  • 机构:中国石油化工股份有限公司大连石油化工研究院;
  • 出版日期:2019-06-18
  • 出版单位:现代化工
  • 年:2019
  • 期:v.39;No.392
  • 基金:国家重点研发计划资助项目(2017YFB0306600)
  • 语种:中文;
  • 页:XDHG201906029
  • 页数:4
  • CN:06
  • ISSN:11-2172/TQ
  • 分类号:146-149
摘要
以环烷基柴油为原料,分别采用轻油型、灵活型及中油型加氢改质催化剂进行加氢改质实验,研究不同加氢改质催化剂的差异性。实验结果表明,环烷基柴油加氢改质可生产高芳烃潜含量的重石脑油以及低温流动性能优异的改质柴油,当改质剂为轻油型改质剂时,需要的改质反应温度、反应氢耗最低;当改质剂为灵活型改质剂时,改质产物分布灵活性最佳;以中油型改质剂为改质段催化剂时,液体产品收率最高且改质柴油品质优异。
        With naphthenic base diesel as feedstock,the differences between the light-oil type,flexible type and medium-oil type catalysts are studied through performing hydro-upgrading experiments. The results indicate that the hydro-upgrading catalysts can process naphthenic base diesel to produce heavy naphtha with high aromatic potential content and diesel with excellent low-temperature flow performance. The required hydro-upgrading reaction temperature and hydrogen consumption are the smallest when a light oil-type hydro-upgrading catalyst is used. The flexibility of product distribution shows the best when using the flexible type cracking catalyst.The liquid products yield exhibits the highest and the quality of products presents superior when using the medium oil type cracking catalyst.
引文
[1]Liu G Y,Kang X H.Application of hydro-technologies in naphthenic lube base oil production[J].Lubricating Oil,2005,20(4):28-32.
    [2]Hui-Ming F,Guo-Ying L I,Xin-Guo L.The application of hydrogen technology in producing naphthenic base lubricating oil[J].Lubricating Oil,2000,7(4):535-543.
    [3]Han S,Cheng X,Ma S,et al.The mechanism of thermal oxidation of a hydrotreated naphthenic lube base oil at high temperature[J].Chemistry&Technology of Fuels&Oils,2009,45(4):260-266.
    [4]张永奎,胡志海,刘晓欣,等.柴油加氢改质过程烃类反应与十六烷值的关系[J].石油学报(石油加工),2013,29(3):376-382.
    [5]Jinlan W,Jianwei Z.Study on solutions to GuoⅤgasoline and diesel upgrading[J].Petroleum Refinery Engineering,2011,41(9):55-59.
    [6]曹正凯,霍海峰,吴子明.掺炼催化裂化柴油对加氢裂化产品性质的影响[J].炼油技术与工程,2018,48(5):26-31.
    [7]柳伟,杜艳泽,秦波,等.FRIPP新一代加氢裂化催化剂的研发及应用[J].炼油技术与工程,2017,47(12):56-59.
    [8]Chong P,Zeng R,Wu Z,et al.Development and application of highefficiency hydrocracking catalyst stacking technology[J].Petroleum Refinery Engineering,2016,46(3):49-51.
    [9]Yongkui Z,Hong N,Zhihai H U,et al.Relationship between hydrocarbons reaction and cetane number in diesel hydro-upgrading[J].Acta Petrolei Sinica,2013,29(3):376-382.
    [10]Zhang L,Huo D,Yue Z,et al.Research and development of catalyst for diesel fuel hydro-upgrading[J].Petroleum Processing&Petrochemicals,2009,40(3):30-32.
    [11]陈菲,刘颖荣,王乃鑫,等.加氢裂化产品分子组成特点及其随转化深度的变化规律研究[J].石油炼制与化工,2015,46(4):103-109.
    [12]Zhang S,Liu D,Deng W,et al.A review of slurry-phase hydrocracking heavy oil technology[J].Energy&Fuels,2007,21(6):3057-3062,3085.