一种鲁棒双向直流变换装置的高阶滑模控制器(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A high-order sliding mode controller for a robust bi-directional DC–DC converter
  • 作者:皇甫宜耿 ; 郭亮 ; 梁艳 ; 李飞 ; 李钱
  • 英文作者:HUANGFU Yi-geng;GUO Liang;LIANG Yan;LI Fei;LI Qian;School of Automation, Northwestern Polytechnical University;
  • 关键词:双向变换器 ; 鲁棒性 ; 高阶滑模算法 ; Super-Twisting ; 李雅普诺夫理论
  • 英文关键词:bidirectional converter;;robustness;;high order sliding mode;;Super-Twisting;;Lyapunov theory
  • 中文刊名:KZLY
  • 英文刊名:Control Theory & Applications
  • 机构:西北工业大学自动化学院;
  • 出版日期:2019-03-15
  • 出版单位:控制理论与应用
  • 年:2019
  • 期:v.36
  • 基金:Supported by the National Natural Science Foundation of China(61873343);; the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(ZZ2018159)
  • 语种:英文;
  • 页:KZLY201903007
  • 页数:10
  • CN:03
  • ISSN:44-1240/TP
  • 分类号:55-64
摘要
随着新能源发电技术的发展,双向直流变换器(BDC)因其能量双向流动的特点而被广泛应用于航空航天、充放电控制和电动汽车等领域.由于在上述应用工况下,能源间歇性输入、负载随机性扰动、功率流向切换均会对系统母线电压产生干扰,因此对控制器的鲁棒性要求较高.论文基于Super-Twisting高阶滑模算法,设计了一种互补脉冲宽度调制(PWM)型双向直流变换器的双闭环强鲁棒控制系统.阐明了Super-Twisting相比传统PI控制在鲁棒性和快速性优势的根本性原因,并基于一种类二次型李雅普诺夫函数,给出系统稳定条件,尤其是给出了更精确的Super-Twisting算法收敛时间的估计值.此外,通过等效控制线性化内环控制,解决了变换器应用中由于内环与变换器的非线性特性所导致的外环非线性算法参数设计复杂的问题,使系统外环亦可方便地采用Super-Twisting非线性算法,进一步提升了系统的鲁棒性.本文基于dSPACE半物理平台构建控制器,结合硬件电路进行实物实验平台的搭建.通过与传统PI双闭环控制对比,分别对母线负载扰动和功率流向切换进行了测试.最后通过仿真和实验验证了本文所设计控制器的有效性.
        With the development of renewable energy technologies, bidirectional DC–DC converters(BDC) are increasingly used in aerospace, navigation, and electric vehicles, due to their bidirectional power flow characteristics. However, the DC bus voltage of a renewable power system is seriously disturbed by the intermittent input of energy, random disturbance of the load, and power flow switching. Therefore, the robustness requirement of the system is high. In the paper, a robust control system was designed for a Buck-Boost BDC driven by complementary PWM, based on the double closed-loop Super-Twisting(ST) control, one kind of high order sliding mode control(HOSMC). In the paper, it is clarified the fundamental reason why Super-Twisting has the advantage of robustness and rapidity over traditional PI control. In addition,based on a quadratic-like Lyapunov function, the conditions for the system to converge in finite time are given. Particularly,the estimated value of the algorithm convergence time is also given. In addition, in the application of converter, the design of parameters of outer loop non-linear algorithm is complicated because of the non-linearity of the inner loop and converter. By linearizing the inner loop control with equivalent control, the problem is solved and the robustness of the system is further improved. Moreover, the controller is realized based on the d SPACE semi-physical platform. Combining with the hardware circuits, the physical experiment platform is built. Finally, compared with traditional PI dual-loop control, the step load disturbance and switching power flow were tested separately, and the effectiveness of the proposed controller in the paper is verified by simulation and experiments.
引文
[1]KHAN M A,AHMED A,HUSAIN I,et al.Performance analysis of bidirectional DC-DC converters for electric vehicles.IEEE Transactions on Industry Applications,2015,51(4):3442-3452.
    [2]XUEWEI P,RATHORE A K.Novel bidirectional snubberless naturally commutated soft-switching current-fed full-bridge isolated D-C/DC converter for fuel cell vehicles.IEEE Transactions on Industrial Electronics,2014,61(5):2307-2315.
    [3]WU C,CHEN J,XU C,et al.Real-time adaptive control of a fuel cell/battery hybrid power system with guaranteed stability.IEEETransactions on Control Systems Technology,2017,25(4):1394-1405.
    [4]TYTELMAIER K,HUSEV O,VELIGORSKYI O,et al.A review of non-isolated bidirectional dc-dc converters for energy storage systems.IEEE 2016 II International Young Scientists Forum on Applied Physics and Engineering(YSF).Kharkiv:IEEE,2016:22-28.
    [5]ASHOK R,SHTESSEL Y.Control of fuel cell-based electric power system using adaptive sliding mode control and observation techniques.Journal of the Franklin Institute,2015,352(11):4911-4934.
    [6]HUANGFU Y,ZHUO S,CHEN F,et al.Evaluation and fault tolerant control of a floating interleaved boost converter for fuel cell systems.2016 IEEE Industry Applications Society Annual Meeting.Portland:IEEE,2016:1-7.
    [7]LAI C M,CHENG Y H,HSIEH M H,et al.Development of a bidirectional DC/DC converter with dual-battery energy storage for hybrid electric vehicle system.IEEE Transactions on Vehicular Technology,2018,67(2):1036-1052.
    [8]ZHAO B,XIAN B,ZHANG Y,et al.Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method.International Journal of Robust and Nonlinear Control,2015,25(18):3714-3731.
    [9]LOPEZ-SANTOS O,MARTINEZ-SALAMERO L,GARCIA G,et al.Robust sliding-mode control design for a voltage regulated quadratic boost converter.IEEE Transactions on Power Electronics,2015,30(4):2313-2327.
    [10]LIU J,VAZQUEZ S,WU L,et al.Extended state observer-based sliding-mode control for three-phase power converters.IEEE Transactions on Industrial Electronics,2017,64(1):22-31.
    [11]MOBAYEN S.Fast terminal sliding mode tracking of non-holonomic systems with exponential decay rate.IET Control Theory&Applications,2015,9(8):1294-1301.
    [12]AGARWAL A,DEEKSHITHA K,SINGH S,et al.Sliding mode control of a bidirectional DC/DC converter with constant power load.2015 IEEE First International Conference on DC Microgrids(ICD-CM).Portland:IEEE,2015:287-292.
    [13]BIGDELI N.Optimal management of hybrid PV/fuel cell/battery power system:A comparison of optimal hybrid approaches.Renewable&Sustainable Energy Reviews,2015,42(42):377-393.
    [14]MUDALIYAR S,MISHRA S.Coordinated voltage control of a grid connected ring DC microgrid with energy hub.IEEE Transactions on Smart Grid,2017,DOI:10.1109/TSG.2017.2783972.
    [15]HUANGFU Y,ZHUO S,RATHORE A K,et al.Super-twisting differentiator-based high order sliding mode voltage control design for DC-DC buck converters.Energies,2016,9(7):494.
    [16]HUANGFU Y,ZHUO S,CHEN F,et al.Robust voltage control of floating interleaved boost converter for fuel cell systems.IEEE Transactions on Industry Applications,2018,54(1):665-674.
    [17]HAN J.From PID to active disturbance rejection control.IEEE transactions on Industrial Electronics,2009,56(3):900-906.
    [18]GARONE E,NICOTRA M M.Explicit reference governor for constrained nonlinear systems.IEEE Transactions on Automatic Control,2016,61(5):1379-1384.
    [19]GALLISTL D,HUBER P,PETERSEIM D.On the stability of the Rayleigh-Ritz method for eigenvalues.Numerische Mathematik,2017,137(2):1-13.
    [20]LI Q,LIU P,WANG Y.An equivalent-control quantization sliding mode controller for a Buck converter.Advances in Materials,Machinery,Electrical Engineering(AMMEE 2017).Tianjin:Atlantis Press,2017.
    [21]YU W,YIGENG H,LIN Z.A robust high order sliding mode for Buck-Boost converters with large disturbances.Proceedings of C-SEE,2015,35(7):1740-1748.