色散测量样机的设计与实验验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Experimental Verification of Dispersion Measurement Prototype
  • 作者:续贝贝 ; 席丽霞 ; 张晓光 ; 唐先锋 ; 张文博
  • 英文作者:Xu Beibei;Xi Lixia;Zhang Xiaoguang;Tang Xianfeng;Zhang Wenbo;State Key Laboratory of Information Photonics and Optical Communications;College of Sciences,University of Posts and Telecommunications;
  • 关键词:光通信 ; 调制相移法 ; 双鉴相电路 ; 数字信号处理 ; 最小二乘法 ; LabVIEW
  • 英文关键词:optical communications;;modulation phase shift method;;dual phase discrimination circuit;;digital signal processing;;least square method;;LabVIEW
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:北京邮电大学信息光子学与光通信国家重点实验室;北京邮电大学理学院;
  • 出版日期:2018-10-20 11:54
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.443
  • 基金:国家自然科学基金(61571057,61527820)
  • 语种:中文;
  • 页:GXXB201902007
  • 页数:6
  • CN:02
  • ISSN:31-1252/O4
  • 分类号:59-64
摘要
设计了基于调制相移法的色散测量样机,提高了色散测量的精度,降低了色散测量成本。设计了基于幅相检测芯片AD8302的双鉴相电路,实现了相位差的准确测量。应用最小二乘法对接收的数据进行拟合,得到了可靠的色散系数曲线。整体采用模块化的设计思想,使用基于芯片F2812的数字信号处理,实现了对各模块插板的控制,完成了数据的采集和处理,并在实验室虚拟仪器工程工作台(LabVIEW)开发平台完成界面设计。对样机的性能进行了实验验证,结果表明,对于不同长度的G.652光纤,在波长1550 nm处,累积色散测量的不确定度小于10 ps/nm。
        A dispersion measurement prototype is designed based on the modulation phase shift method, which improves the accuracy and reduces the cost of dispersion measurement. In addition, the dual phase discrimination circuit is designed based on the amplitude and phase detection chip AD8302 and the accurate measurement of phase difference is realized. The least square method is used to fit the received data and a reliable dispersion coefficient curve is obtained. The modular design is adopted as a whole. The digital signal processing based on chip F2812 is also used to accomplish the control to the board of each module as well as the collection and processing of data. The interface is designed on the LabVIEW development platform. The performance of the prototype is verified by experiments and the results show that the uncertainty of the cumulative dispersion measurement at wavelength of 1550 nm is less than 10 ps/nm for the G.652 fibers with different lengths.
引文
[1] Fortenberry R, Sorin W V, Hernday P. Improvement of group delay measurement accuracy using a two-frequency modulation phase-shift method[J]. IEEE Photonics Technology Letters, 2003, 15(5): 736-738.
    [2] Niemi T, Uusimaa M, Ludvigsen H. Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2001, 13(12): 1334-1336.
    [3] Grósz T, Kovács A P, Kiss M, et al. Measurement of higher order chromatic dispersion in a photonic bandgap fiber: comparative study of spectral interferometric methods[J]. Applied Optics, 2014, 53(9): 1929-1937.
    [4] Hlubina P, Szpulak M, Ciprian D, et al. Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry[J]. Optics Express, 2007, 15(18): 11073-11081.
    [5] Lee J Y, Kim D Y. Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry[J]. Optics Express, 2006, 14(24): 11608-11615.
    [6] Hlubina P, Ciprian D, Kadulová M. Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry[J]. Measurement Science and Technology, 2010, 21(4): 045302.
    [7] Galle M A, Mohammed W S, Qian L, et al. Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber[J]. Optics Express, 2007, 15(25): 16896-16908.
    [8] Lu P, Ding H M, Mihailov S J. Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry[J]. Measurement Science and Technology, 2005, 16(8): 1631-1636.
    [9] Zong L J. Reliable chromatic dispersion measurement method for installed optical fibers[J]. Applied Optics, 2015, 54(26): 7973-7977.
    [10] Neumann N, Herschel R, Schuster T, et al. Dispersion estimation via vestigial sideband filtering using an optical delay line filter[J]. Journal of Optical Communications and Networking, 2011, 3(2): 155-161.
    [11] Al-Asadi H A, Al-Mansoori M H, Hitam S, et al. Particle swarm optimization on threshold exponential gain of stimulated Brillouin scattering in single mode fibers[J]. Optics Express, 2011, 19(3): 1842-1853.
    [12] Lin J, Zhao H Y, Ma Y, et al. New hybrid genetic particle swarm optimization algorithm to design multi-zone binary filter[J]. Optics Express, 2016, 24(10): 10748-10758.
    [13] Zhang X G, Zhang J Z, Duan G Y, et al. An experiment for obtaining DOP ellipsoid using particle swarm optimization algorithm[J]. Chinese Optics Letters, 2005, 3(6): 316-318.
    [14] Zhou Y, Zeng G J, Yu F H. Particle swarm optimization-based approach for optical finite impulse response filter design[J]. Applied Optics, 2003, 42(8): 1503-1507.
    [15] Liu J, Ma Y H. Design of magnitude and phase measuring system with high precision based on AD8302[J]. Computer Measurement & Control, 2011, 19(2): 253-255. 刘静, 马彦恒. 基于AD8302的高精度幅相检测系统的设计[J]. 计算机测量与控制, 2011, 19(2): 253-255.
    [16] Zhou D. Design of high-precision phase difference detecting system based on DSP[D]. Xi’an: Xidian University, 2012: 25-38. 周笛. 基于DSP高精度相位差检测系统设计[D]. 西安: 西安电子科技大学, 2012: 25-38.
    [17] Li Y, Xi L X, Zhang X G, et al. Experimental research on chromatic dispersion measurement based on digital phase detector[J]. Chinese Journal of Lasers, 2016, 43(10): 1004003. 李赟, 席丽霞, 张晓光, 等. 基于数字鉴相的色散测量实验研究[J]. 中国激光, 2016, 43(10): 1004003.