Angular filtering by volume Bragg grating in photothermorefractive glass for nanosecond laser pulse
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Angular filtering by volume Bragg grating in photothermorefractive glass for nanosecond laser pulse
  • 作者:熊宝星 ; 高帆 ; 张翔 ; 袁孝
  • 英文作者:Baoxing Xiong;Fan Gao;Xiang Zhang;Xiao Yuan;School of Optoelectronic Science and Engineering, Soochow University;Jiangsu Provincial Key Laboratory of Advanced Optical Manufacturing Technologies and Key Laboratory of Modern Optical Technologies of the Ministry of Education;Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University;
  • 中文刊名:GXKB
  • 英文刊名:中国光学快报(英文版)
  • 机构:School of Optoelectronic Science and Engineering, Soochow University;Jiangsu Provincial Key Laboratory of Advanced Optical Manufacturing Technologies and Key Laboratory of Modern Optical Technologies of the Ministry of Education;Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University;
  • 出版日期:2019-04-25
  • 出版单位:Chinese Optics Letters
  • 年:2019
  • 期:v.17
  • 基金:supported by the National Key R&D Program of China(No.2016YFF0100900);; the National Natural Science Foundation of China(NSFC)(Nos.61775153,61705153,and 11504255);; the Natural Science Foundation of Jiangsu Province(No.BK20141232);; the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
  • 语种:英文;
  • 页:GXKB201904004
  • 页数:4
  • CN:04
  • ISSN:31-1890/O4
  • 分类号:19-22
摘要
The two-dimensional angular filter based on volume Bragg gratings in photothermorefractive glass for a nanosecond(ns) laser pulse is demonstrated. The experimental results show that the near-field beam quality of the laser pulse was effectively improved. The near-field modulation and contrast ratio were improved by 1.75 and4.48 times, respectively. The power spectral density curves showed that the spatial frequencies more than0.9 mm~(-1)in the x direction and 1.2 mm~(-1)in the y direction were effectively suppressed.
        The two-dimensional angular filter based on volume Bragg gratings in photothermorefractive glass for a nanosecond(ns) laser pulse is demonstrated. The experimental results show that the near-field beam quality of the laser pulse was effectively improved. The near-field modulation and contrast ratio were improved by 1.75 and4.48 times, respectively. The power spectral density curves showed that the spatial frequencies more than0.9 mm~(-1)in the x direction and 1.2 mm~(-1)in the y direction were effectively suppressed.
引文
1.A.E.Erlandson,K.S.Jancaitis,G.Letouze,C.D.Mashall,S.E.Seznec,and L.E.Zapata,Proc.SPIE 3492,638(1999).
    2.W.H.Willians,J.M.Auerbach,M.A.Henesian,and J.K.Lawson,Proc.SPIE 3264,93(1998).
    3.D.M.Aikens,C.R.Wolfe,and J.K.Lawson,Proc.SPIE 2576,281(1995).
    4.A.M.Rubenchik,S.K.Turitsyn,and M.P.Fedoruk,Opt.Express18,1380(2010).
    5.J.T.Hunt,J.A.Glaze,W.W.Simmons,and P.A.Renard,Appl.Opt.17,2053(1978).
    6.J.S.Pearlman and J.P.Anthes,Appl.Opt.16,2328(1977).
    7.J.E.Murray,D.Milam,C.D.Boley,K.G.Estabrook,and J.A.Caird,Appl.Opt.39,1405(2000).
    8.S.A.Dimakov,S.I.Zavgorodneva,L.V.Koval’chuk,A.Y.Rodionov,and V.P.Yashukov,Sov.J.Quantum Electron.19,803(1989).
    9.J.M.Auerbach,N.C.Holmes,J.T.Hunt,and G.J.Linford,Appl.Opt.18,2495(1979).
    10.H.J.Zhang,S.L.Zhou,Y.E.Jiang,J.H.Li,W.Feng,and Z.Q.Lin,Chin.Opt.Lett.10,060501(2012).
    11.X.Zhang,X.Yuan,S.Wu,J.S.Feng,K.S.Zou,and G.J.Zhang,Opt.Lett.36,2167(2011).
    12.G.Meltz,W.W.Morey,and W.H.Glenn,Opt.Lett.14,823(1989).
    13.R.L.Sutherland,V.P.Tondiglia,L.V.Natarajan,T.J.Bunning,and W.W.Adams,Appl.Phys.Lett.64,1074(1994).
    14.J.E.Ludman,J.R.Riccobono,N.O.Reinhand,I.V.Semenova,Y.L.Korzinin,and M.S.Shahriar,Proc.SPIE 2532,481(1995).
    15.J.E.Ludman,J.R.Riccobono,N.O.Reinhand,I.V.Semenova,Y.L.Korzinin,M.S.Shahriar,H.J.Caulfield,J.M.Fournier,and P.Hemmer,Opt.Eng.36,1700(1997).
    16.J.E.Ludman,J.R.Riccobono,N.O.Reinhand,Y.L.Korzinin,I.V.Semenova,and M.S.Shahriar,Quantum Electron.26,1093(1996).
    17.H.B.Zheng,Y.L.He,J.C.Tan,G.W.Zheng,D.Y.Ding,X.Wang,and X.D.Wang,Proc.SPIE 7506,75062A(2009).
    18.G.Zheng,B.Shen,J.Tan,Y.He,and X.Wang,Chin.Opt.Lett.9,030501(2011).
    19.Y.Zhang,H.J.Qi,K.Yi,Y.Z.Wang,H.B.He,and J.D.Shao,Chin.Opt.Lett.12,S20501(2014).
    20.L.B.Glebov,N.V.Nikonorov,E.I.Panysheva,G.T.Petrovskii,V.V.Savvin,I.V.Tunimanova,and V.A.Tsekhomskii,Sov.Phys.Dokl.35,878(1990).
    21.O.M.Efimov,L.B.Glebov,L.N.Glebova,K.C.Richardson,and V.I.Smirnov,Appl.Opt.38,619(1999).
    22.O.M.Efimov,L.B.Glebov,S.Papernov,and A.W.Schmid,Proc.SPIE 3578,554(1999).
    23.F.Gao,X.Zhang,X.J.Sun,and X.Yuan,Opt.Lett.41,1082(2016).
    24.X.Zhang,J.S.Feng,B.X.Xiong,K.S.Zou,and X.Yuan,Opt.Express 22,8291(2014).
    25.X.Zhang,X.Yuan,J.S.Feng,F.Gao,B.X.Xiong,and K.S.Zou,Opt.Lett.39,663(2014).
    26.F.Gao,X.Yuan,and X.Zhang,Chin.Opt.Lett.14,060502(2016).
    27.B.M.Anderson,E.Hale,G.Venus,D.Ott,I.Divliansky,and L.Glebov,Proc.SPIE 9726,972611(2016).
    28.H.Kogelnik,Bell Syst.Tech.J.48,2909(1969).
    29.Z.H.Sun,Z.T.Peng,H.Liu,L.B.Xu,J.P.Zhao,C.Wang,and X.J.Fu,Chin.J.Lasers 35,544(2008).
    30.J.M.Elson and J.M.Bennett,Appl.Opt.34,201(1995).