高速干切滚齿工艺切屑形变规律及其对刀具的损伤行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Contribution of Chip Deformations and Crushes to Tool Failures in High-speed Dry Gear Hobbing
  • 作者:李本杰 ; 曹华军 ; 杨潇 ; 周进
  • 英文作者:LI Benjie;CAO Huajun;YANG Xiao;ZHOU Jin;State Key Laboratory of Mechanical Transmission,Chongqing University;
  • 关键词:高速干切滚齿 ; 切屑形变 ; 切屑挤压 ; 刀具损伤
  • 英文关键词:high-speed dry gear hobbing;;chip deformation;;chip crush;;tool failure
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:重庆大学机械传动国家重点实验室;
  • 出版日期:2019-01-03 14:44
  • 出版单位:中国机械工程
  • 年:2019
  • 期:v.30;No.505
  • 基金:国家自然科学基金资助项目(51475058)
  • 语种:中文;
  • 页:ZGJX201901012
  • 页数:8
  • CN:01
  • ISSN:42-1294/TH
  • 分类号:75-82
摘要
针对高速干切滚齿过程中切屑的形变规律及切屑挤压行为,基于DEFORM-3D建立了高速干切滚齿工艺仿真实验模型,通过对不同工艺参数下高速干切滚齿工艺实验仿真,实现了高速干切滚齿过程中齿轮材料去除过程的可视化,获得了高速干切滚齿过程中切屑的形变规律以及干切滚刀的磨损状态。结合实际高速干切滚齿加工实验,对比切屑形貌及干切滚刀损伤情况,进一步验证了切屑在生成及流动过程中的形变规律以及切屑对干切滚刀的挤压损伤行为。研究结果可为高速干切滚齿工艺参数优化以及高速干切滚刀的寿命延长和性能控制提供参考。
        In allusion to the chip deformations and chip crushes in high-speed dry gear hobbing,a simulation model of high-speed dry gear hobbing was built based on DEFORM-3Dherein.Through the simulation of high-speed dry gear hobbing under different process parameters,the visualization of material removal processes in high-speed dry gear hobbing was achieved,and the mechanism of chip deformations and the tool wear conditions of dry hobs were obtained.Combined with experiments,the simulation results were further validated by comparing the chip geometry and tool damage types obtained from simulation and experiments respectively.This study may provide a reference for parameter optimizations and tool life extension in high-speed dry gear hobbing.
引文
[1] MATSUOKA H,ONO H,TSUDA Y.Fundamental Research on Cutting Performance of Water-soluble Cutting Fluids Compared with Dry Hobbing[J].JSME International Journal Series C,2005,48(3):371-380.
    [2] KOMORI M,SUMI M,KUBO A.Simulation of Hobbing for Analysis of Cutting Edge Failure Due to Chip Crush[J].ASME 2003International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2003(4):535-541.
    [3] KOMORI M,SUMI M,KUBO A.Method of Preventing Cutting Edge Failure of Hob due to Chip Crush[J].JSME International Journal Series C,2004,47(4):1140-1148.
    [4] FRIDERIKOS O,MALIARIS G,DAVID C N,et al.An Investigation of Cutting Edge Failure due to Chip Crush in Carbide Hobbing Using the Finite Element Method[J].International Journal of Manufacture Technology,2011,57(1/4):297-306.
    [5] BOUZAKIS K D,FRIDERIKOS O,TSIAFIS I.FEM Supported Simulation of Chip Formation and Flow in Gear Hobbing of Spur and Helical Gears[J].CIRP Journal of Manufacturing Science and Technology,2008,1(1):18-26.
    [6] BOUZAKIS K D,LILI E,MICHAILIDIS N,et al.Manufacturing of Cylindrical Gears by Generating Cutting Processes:a Critical Synthesis of Analysis Methods[J].CIRP Annals—Manufacturing Technology,2008,57:676-696.
    [7] BOUZAKIS K D,CHATZIS K,KOMBOGIANNIS S,et al.Effect of Chip Geometry and Cutting Kinematics on the Wear of Coated PM-HSS Tools in Milling[C]//Proceeding of 7th International Conference.Chalkidiki,2008:197-208.
    [8] VASILIS D,NECTARIOS V,ARISTOMENIS A.Advanced Computer Aided Design Simulation of Gear Hobbing by Means of Three-dimensional Kinematics Modeling[J].Journal of Manufacturing Science and Engineering:Transactions of the ASME,2007,129(5):911-918.
    [9]张荣闯,王宛山,王军.滚齿切削厚度仿真计算[J].东北大学学报(自然科学版),2015,36(1):95-98.ZHANG Rongchuang,WANG Wanshan,WANG Jun.Simulation Calculation of Undeformed Chip Thickness in Gear Hobbing[J].Journal of Northeastern University(Natural Science),2015,36(1):95-98.
    [10] STEIN S,LECHTHALER M,KRASSNITZER S,et al.Gear Hobbing:a Contribution to Analogy Testing and Its Wear Mechanisms[J].5th CIRP International Conference on High Performance Cutting,Procedia CIRP,2012,1(1):220-225.
    [11]陈永鹏,曹华军,李先广,等.圆柱齿轮滚切多刃断续切削空间成形模型及应用[J].机械工程学报,2016,52(9):176-183.CHEN Yongpeng,CAO Huajun,LI Xianguang,et al.The Model of Spatial Forming with Multicutting-edge for Cylindrical Gear Hobbing and Its Application[J].Journal of Mechanical Engineering,2016,52(9):176-183.
    [12]陈永鹏.高速干切滚齿多刃断续切削空间成形模型及其基础应用研究[D].重庆:重庆大学,2015.CHEN Yongpeng.Spatial Forming Model of Highspeed Dry Hobbing by Interrupted Cutting with Multiple-cutting-edge and Its Application[D].Chongqing:Chongqing University,2015.
    [13] RECH J,DJOUADI M A,PICOT J.Wear Resistance of Coatings in High Speed Gear Hobbing[J].Wear,2001,250(1/12):45-53.
    [14]周力,曹华军,陈永鹏,等.基于Deform3D的齿轮高速干式滚切过程模型及性能分析[J].中国机械工程,2015,26(20):2705-2710.ZHOU Li,CAO Huajun,CHEN Yongpeng,et al.Process Simulation Model and Performance Analysis of High-speed Dry Gear Hobbing Based on Deform3D[J].China Mechanical Engineering,2015,26(20):2705-2710.
    [15]周力.齿轮高速干式滚切过程有限元仿真实验及分析[D].重庆:重庆大学,2015.ZHOU Li.Finite Element Analysis of High-speed Dry Gear Hobbing Process[D].Chongqing:Chongqing University,2015.
    [16] NEE A Y C.Handbook of Manufacturing Engineering and Technology[M].London:Springerverlag London,2015.
    [17] MOUFKI A,DUDZINSKI D,MOLINARI A,et al.Thermoviscoplastic Modelling of Oblique Cutting:Forces and Chip Flow Predictions[J].International Journal of Mechanical Sciences,2000,42(6):1205-1232.
    [18] WANG Bing,LIU Zhanqiang.Investigations on the Chip Formation Mechanism and Shear LocalizationSensitivityofHigh-speedMachining Ti6Al4V[J].International Journal of Advanced Manufacturing Technology,2014,75(5/8):1065-1076.
    [19] COCKCROFT M G,LATHAM D J.Ductility and the Workability of Metals[J].Journal of the Institute of Metals,1968,96:33-39.
    [20]ZEL T,ALTAN T.Determination of Workpiece Flow Stress and Friction at the Chip-tool Contact for High-speed Cutting[J].International Journal of Machine Tools&Manufacture,2000,40(1):133-152.
    [21] GERTH J,WERNER M,LARSSON M,et al.Reproducing Wear Mechanisms in Gear Hobbing:Evaluation of a Single Insert Milling Test[J].Wear,2009,267(12):2257-2268.