碳氢燃料在波纹管内的超临界裂解传热特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Supercritical Heat Transfer Characteristics of Hydrocarbon Fuel with Pyrolysis in Corrugated Tubes
  • 作者:黄世璋 ; 朱强 ; 高效伟
  • 英文作者:HUANG Shi-zhang;ZHU Qiang-hua;GAO Xiao-wei;Aeronautics and Astronautics,Dalian University of Technology;
  • 关键词:超临界压力 ; 碳氢燃料 ; 波纹管 ; 热解 ; 主动再生冷却
  • 英文关键词:Supercritical pressure;;Hydrocarbon;;Corrugated tube;;Pyrolysis;;Active regenerative cooling
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:大连理工大学航空航天学院;
  • 出版日期:2019-01-15
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.259
  • 基金:国家自然科学基金(11672061);; 中央高校基本科研业务费(DUT17LK58)资助项目
  • 语种:中文;
  • 页:TJJS201901012
  • 页数:12
  • CN:01
  • ISSN:11-1813/V
  • 分类号:101-112
摘要
为了探究波纹型冷却通道在碳氢燃料发动机再生冷却系统中的适用性,基于一步总包反应机理,建立了同时考虑碳氢燃料流动传热、裂解吸热与固体导热的耦合算法,在此基础上对超临界压力下正癸烷在波纹管内的流动传热和裂解吸热现象展开数值研究。通过与光滑管进行对比,分析了波纹结构对管内热量传递、组分输运和裂解反应吸热的影响,进一步研究了不同壁面热流下的裂解传热特性。研究表明:波纹管可以显著提升燃料的换热能力,平均对流换热系数最高可提升40%;波纹管内的速度波动使流场内温度和组分浓度在径向的分布更加均匀,同时降低了正癸烷的裂解吸热率和平均裂解转化率;壁面热流在0.8MW/m2~1.0MW/m2变化时,正癸烷裂解吸热率和综合换热性能随热流的增加而增加。
        In order to investigate the feasibility of corrugated cooling channel for regenerative cooling system of hydrocarbon-fueled engine,a numerical method considering convective heat transfer,endothermic pyrolytic reaction,and heat conduction in solid region simultaneously was developed based on a one-step thermal cracking mechanism.Based on this,a numerical investigation on turbulent heat transfer of n-decane flowing inside corrugated tubes with endothermic pyrolysis at supercritical pressure was conducted.The effects of corrugated tube structures on heat transfer,species transport and endothermic pyrolysis were analyzed through comparison with smooth tube.Moreover,the influence of wall heat fluxes was further studied.Results reveal that corrugated tubes can significantly improve the heat transfer ability,and the averaged convective heat transfer coefficient increase by up to 40%.The velocity fluctuations induced by corrugation lead to more uniform distribution of temperature and species concentration in radial direction.It can also reduce the pyrolytic heat-absorbing rate and averaged fuel conversion.With the increasing wall heat fluxes ranging from 0.8 MW/m2 to 1.0 MW/m2,the overall thermal performance and pyrolytic heat-absorbing rate are improved.
引文
[1]乐嘉陵,刘陵.高超声速飞行器的碳氢燃料双模态超燃冲压方案研究[J].流体力学实验与测量,1997,11(2):1-13.
    [2]俞刚,范学军.超声速燃烧与高超声速推进[J].力学进展,2013,43(5):449-472.
    [3]李斌,张小平,马冬英.我国新一代载人火箭液氧煤油发动机[J].载人航天,2014,20(5):427-431.
    [4]蔡红华,聂万胜,丰松江.复燃对液氧煤油发动机尾焰冲击特性影响研究[J].推进技术,2016,37(10):1922-1927.(CAI Hong-hua,NIE Wan-sheng,FENGSong-jiang.Effects of Afterburning on Impact Properties of LOx/Kerosene Engine Exhaust Plume[J].Journal of Propulsion Technology,2016,37(10):1922-1927.)
    [5]Zhong F,Fan X,Yu G,et al.Heat Transfer of Aviation Kerosene at Supercritical Conditions[J].Journal of Thermophysics and Heat Transfer,2009,23(3):543-550.
    [6]范学军,俞刚.大庆RP-3航空煤油热物性分析[J].推进技术,2006,27(2):187-192.(FAN Xuejun,YU Gang.Analysis of Thermophysical Properties of Daqing RP-3 Aviation Kerosene[J].Journal of Propulsion Technology,2006,27(2):187-192.)
    [7]Zhou W,Jia Z,Qin J,et al.Experimental Study on Effect of Pressure on Heat Sink of n-Decane[J].Chemical Engineering Journal,2014,243(4):127-136.
    [8]Chen A,Dang L.Characterization of Supercritical JP-7's Heat Transfer and Coking Properties[R].AIAA2002-0005.
    [9]Xu K,Meng H.Modeling and Simulation of Supercritical-Pressure Turbulent Heat Transfer of Aviation Kerosene with Detailed Pyrolytic Chemical Reactions[J].Energy&Fuels,2015,(6).
    [10]Xu K,Tang L,Meng H.Numerical Study of Supercritical-Pressure Fluid Flows and Heat Transfer of Methane in Ribbed Cooling Tubes[J].International Journal of Heat and Mass Transfer,2015,84:346-358.
    [11]谢凯利.小尺度矩形通道内碳氢燃料流动及强化传热研究[D].哈尔滨:哈尔滨工业大学,2015.
    [12]陈建华,张贵田,吴海波,等.高压推力室人为粗糙度煤油强化换热实验[J].实验流体力学,2008,22(04):34-38.
    [13]鲍文,周伟星,周有新,等.超燃冲压发动机再生冷却结构强化换热优化研究[J].宇航学报,2008,29(1):246-252.
    [14]朱强华,崔苗,高效伟.肋开孔高度对大宽高比矩形通道流动传热的影响[J].推进技术.2014,35(12):1630-1638.(ZHU Qiang-hua,CUI Miao,GAOXiao-wei.Effects of Holes Height on Flow and Heat Transfer in a Ribbed Rectangular Channel with Large Aspect Ratio[J].Journal of Propulsion Technology,2014,35(12):1630-1638.)
    [15]Kareem Z S,Jaafar M N M,Lazim T M,et al.Passive Heat Transfer Enhancement Review in Corrugation[J].Experimental Thermal and Fluid Science,2015,68:22-38.
    [16]刘佳驹,刘伟.三头螺旋波纹管强化传热数值模拟[J].工程热物理学报,2013,34(11):2128-2131.
    [17]肖金花,钱才富,黄志新.波纹管传热强化效果与机理研究[J].化学工程,2007,35(1):12-15.
    [18]曾敏,王秋旺,屈治国,等.波纹管内强制对流换热与阻力特性的实验研究[J].西安交通大学学报,2002,36(3):237-240.
    [19]Vicente P G,García A,Viedma A.Mixed Convection Heat Transfer and Isothermal Pressure Drop in Corrugated Tubes for Laminar and Transition Flow[J].International Communications in Heat and Mass Transfer,2004,31(5):651-662.
    [20]Vicente P G,García A,Viedma A.Experimental Investigation on Heat Transfer and Frictional Characteristics of Spirally Corrugated Tubes in Turbulent Flow at Different Prandtl Numbers[J].International Journal of Heat and Mass Transfer,2004,47(4):671-681.
    [21]Qi C,Wang G,Li C,et al.Experimental and Numerical Research on the Flow and Heat Transfer Characteristics of TiO2-Water Nanofluids in a Corrugated Tube[J].International Journal of Heat and Mass Transfer,2017,115:1072-1084.
    [22]黄世璋,阮波,高效伟.超临界压力低温甲烷波纹管内强化换热数值研究[J].航空学报,2017,(5):22-35.
    [23]Ely J F,Hanley H J M.Prediction of Transport Properties.1.Viscosity of Fluids and Mixtures[J].Industrial&Engineering Chemistry Fundamentals,1981,20(4):323-332.
    [24]Ely J F,Hanley H J M.Prediction of Transport Properties.2.Thermal Conductivity of Pure Fluids and Mixtures[J].Industrial&Engineering Chemistry Fundamentals,1983,22(1):90-97.
    [25]Meng H,Yang V.A Unified Treatment of General Fluid Thermodynamics and Its Application to a Preconditioning Scheme[J].Journal of Computational Physics,2003,189(1):277-304.
    [26]Ward T A,Ervin J S,Zabarnick S,et al.Pressure Effects on Flowing Mildly-Cracked n-Decane[J].Journal of Propulsion and Power,2005,21(2):344-355.
    [27]Ruan B,Meng H,Yang V.Simplification of Pyrolytic Reaction Mechanism and Turbulent Heat Transfer of nDecane at Supercritical Pressures[J].International Journal of Heat and Mass Transfer,2014,69:455-463.
    [28]Ward T,Zabarnick S,Ervin J,et al.Simulations of Flowing Mildly-Cracked Normal Alkanes Incorporating Proportional Product Distributions[J].Journal of Propulsion and Power,2004,20(3):394-402.
    [29]Ruan B,Huang S,Meng H,et al.Transient Responses of Turbulent Heat Transfer of Cryogenic Methane at Supercritical Pressures[J].International Journal of Heat and Mass Transfer,2017,109:326-335.
    [30]Ruan B,Huang S,Meng H,et al.Flow Dynamics in Transient Heat Transfer of n-Decane at Supercritical Pressure[J].International Journal of Heat and Mass Transfer,2017,115:206-215.