亚声速涡轮导叶全气膜冷却特性实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Investigation of Full Film Cooling Characteristics of Subsonic Turbine Guide Vane
  • 作者:付仲议 ; 朱惠 ; 姚春意 ; 张洪 ; 高强
  • 英文作者:FU Zhong-yi;ZHU Hui-ren;YAO Chun-yi;ZHANG Hong;GAO Qiang;School of Power and Energy,Northwestern Polytechnical University;AVIC Commercial Aircraft Engine Limited Company;
  • 关键词:涡轮导叶 ; 气膜冷却 ; 质量流量比 ; 雷诺数 ; 主流湍流度
  • 英文关键词:Turbine vane;;Film cooling;;Mass flow rate ratio;;Reynolds number;;Mainstream turbulence intensity
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西北工业大学动力与能源学院;中航商用航空发动机有限责任公司;
  • 出版日期:2019-01-15
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.259
  • 基金:国家重点基础研究发展规划资助(2013CB035702)
  • 语种:中文;
  • 页:TJJS201901019
  • 页数:8
  • CN:01
  • ISSN:11-1813/V
  • 分类号:164-171
摘要
为了获得亚声速涡轮导叶的全气膜冷却特性,在短周期高速风洞中对全气膜覆盖涡轮导叶实验件进行了实验,获得了涡轮叶片表面在不同主流雷诺数(Re=3.0×10~5~9.0×10~5)、二次流质量流量比(MFR=5.5%~12.5%)和主流湍流度(Tu=1.3%,14.7%)下的气膜冷却效率分布。实验叶片前缘有5排复合角度圆柱形气膜孔形成前缘喷淋冷却结构,压力面和吸力面分别有6排和3排圆柱形气膜孔。结果表明:在本文研究的质量流量比范围内,涡轮叶片压力面和吸力面的气膜冷却效率随着质量流量比的增大而减小,而前缘区域的冷却效率随质量流量比的增大而增大;雷诺数的变化主要影响叶片压力面相对弧长S/Smax<-0.6区域的冷却效率分布,在高雷诺数(Re=9.0×10~5)下,大质量流量比的冷却效率最高,而在中低雷诺数(Re=3.0×105,6.4×105)下,小质量流量比的冷却效率最高;叶片前缘气膜冷却效率受主流湍流度升高的影响较小,而在压力面和吸力面冷却效率均随着湍流度的升高而降低。
        In order to study the full film cooling characteristics of subsonic turbine guide vane,the film cooling effectiveness of full coverage film cooling turbine vane at different mainstream inlet Reynolds number(Re=3.0×105~9.0×105),second flow mass flow rate ratio(MFR=5.5%~12.5%)and mainstream turbulenceintensity(Tu=1.3%,14.7%)conditions is measured in short-duration high speed wind tunnel.There are 5 compound angle cylindrical hole rows on the leading edge to obtain a showerhead film cooling,6 cylindrical holes rows on the pressure side and 3 rows on the suction side.The results show that in the range of mass flow rate ratio studied in the present paper,the film cooling effectiveness on pressure and suction side decreases with mass flow rate ratio increasing,while the effect of mass flow rate ratio on the film cooling effectiveness on the leading edge is opposite.The change of mainstream inlet Reynolds number mainly affects the film cooling effectiveness in the region of relative arc S/Smax<-0.6,at high Reynolds number(Re=9.0×105)the highest film cooling effectiveness is obtained at high mass flow rate ratio,while at middle and low Reynolds number(Re=3.0×105,6.4×105)the highest film cooling effectiveness is obtained at low mass flow rate ratio.The film cooling effectiveness on the leading is not affected obviously by the change of turbulence intensity,while the film cooling effectiveness on pressure and suction side decreases with the mainstream turbulence intensity increasing.
引文
[1]Kelly G B,Bogard D G.An Investigationof the Heat Transfer for Full Coverage Film Cooling[R].ASME GT2003-38716.
    [2]Zhang C,Lin Y,Xu Q,et al.Cooling Effectiveness of Effusion Walls with Deflection Hole Angles Measured by Infrared Imaging[J].Applied Thermal Engineering,2009,29(5):966-972.
    [3]Lin Y,Song B,Li B,et al.Investigation of Film Cooling Effectiveness of Full-Coverage Inclined Multihole Walls with Different Hole Arrangements[R].ASME GT2003-38881.
    [4]Goldstein R J,Stone L D.Row-of-Holes Film Cooling of a Convex and a Concave Wall at Low Injection Angles[J].Journal of Turbomachinery,1997,119(3):574-579.
    [5]Qin Y,Ren J,Jiang H.Effects of Streamwise Pressure Gradient and Convex Curvature on Film Cooling Effectiveness[R].ASME GT 2014-25808.
    [6]Mehendale A B,Han J C.Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer[J].Journal of Turbomachinery,1992,114(4):707-715.
    [7]Mehendale A B,Han J C.Reynolds Number Effect on Leading Edge Film Effectiveness and Heat Transfer Coefficient[J].Journal of Heat Mass Transfer,1993,36(15):3723-3730.
    [8]Mhetras S,Han J C,Rudolph R.Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade[J].Journal of Turbomachinery,2007,134(1):93-103.
    [9]Li J,Ren J,Jiang H D.Effects of Density Ratio and Blowing Ratio on the Film Cooling Effectiveness on a Turbine Vane[J].Journal of Engineering Thermophysics,2011,32(8):1295-1298.
    [10]白江涛,朱惠人,张宗卫,等.叶片全表面换热系数和冷却效率的实验测量[J].西安交通大学学报,2010,44(11):92-97.
    [11]Gritsch M,Schulz A,Wittig S.Film-Cooling Holes with Expanded Exits:Near-Hole Heat Transfer Coefficients[J].International Journal of Heat&Fluid Flow,2000,21(2):146-155.
    [12]Ekkad S V,Han J C,Du H.Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model:Effect of Free-Stream Turbulence and Coolant Density[J].Journal of Turbomachinery,1998,120(4):799-807.
    [13]Schroeder R P,Thole K A.Thermal Field Measurements for a Shaped Hole at Low and High Freestream Turbulence Intensity[R].ASME GT 2016-56967.
    [14]Schulz S,Maier S,Bons J P.An Experimental Investigation of an Anti-Vortex Film Cooling Geometry under Low and High Turbulence Conditions[R].ASME GT2012-69237.
    [15]周志翔,刘存良,张宗卫,等.主流湍流度对涡轮导向叶片气膜冷却特性影响的实验[J].航空动力学报,2014,29(6):1279-1286.
    [16]Wu H,Xu G,Yang B,et al.Heat Transfer Coefficients of Film Cooling on a Rotating Turbine Blade Model:Part II-Effects of Reynolds Number and Rotation Number[R].ASME GT 2008-50535.
    [17]刘聪,朱惠人,付仲议,等.涡轮导叶吸力面簸箕型孔气膜冷却特性实验研究[J].推进技术,2016,37(6):1142-1150.(LIU Cong,ZHU Hui-ren,FU Zhongyi,et al.Experimental Study of Film Cooling Characteristics for Dust-Pan Shaped Holes on Suction Side in Turbine Guide Vane[J].Journal of Propulsion Technology,2016,37(6):1142-1150.)
    [18]刘聪,朱惠人,付仲议,等.涡轮动叶压/吸力面气膜孔冷却特性实验研究[J].推进技术,2016,37(3):511-519.(LIU Cong,ZHU Hui-ren,FU Zhong-yi,et al.Experimental Study of Film Cooling Characteristics on Pressure and Suction Side in a Turbine Blade[J].Journal of Propulsion Technology,2016,37(3):511-519.)
    [19]付仲议,朱惠人,刘聪,等.涡轮导叶压力面簸箕形气膜孔冷却特性实验研究[J].推进技术,2016,37(12):2303-2311.(FU Zhong-yi,ZHU Hui-ren,LIUCong,et al.Experimental Study of Film Cooling Characteristics for Dust-Pan Shaped Holes on Pressure Side in a Turbine Guide Vane[J].Journal of Propulsion Technology,2016,37(12):2303-2311.)
    [20]彭威,姜培学.不同主流进口湍流度下的超声速气膜冷却[J].工程热物理学报,2010,31(1):127-129.
    [21]Nix A C,Smith A C,Diller T E.High Intensity,Large Length-Scale Freestream Turbulence Generation in a Transonic Turbine Cascade[R].ASME GT 2002-30523.
    [22]李红才,朱惠人,任战鹏,等.短周期跨声速风洞叶栅换热实验验证[J].西安交通大学学报,2013,47(9):49-54.