SiO_2基底Nb原位掺杂MoS_2纳米薄膜的制备及场效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Field-effect Mobility of Nb Doped MoS_2 Nano-films on SiO_2 Substrate
  • 作者:孙钰琨 ; 白波 ; 马美玲 ; 王洪伦 ; 索有瑞 ; 谢黎明 ; 柴禛
  • 英文作者:SUN Yukun;BAI Bo;MA Meiling;WANG Honglun;SUO Yourui;XIE Liming;CHAI Zhen;Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University;Northwest Plateau Institutes of Biology, Chinese Academy of Sciences;Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, National Center for Nanoscience and Technology;
  • 关键词:二维薄膜材料 ; 过渡金属硫化物 ; 化学气相沉积法(CVD) ; 拉曼光谱 ; 光致发光光谱 ; 场效应晶体管
  • 英文关键词:two-dimensional films;;transition-metal dichalcogenides;;chemical vapor deposition(CVD);;Raman spectroscopy;;photoluminescence spectrum;;field effect transistor
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:长安大学旱区地下水文与生态效应教育部重点实验室;中科院西北高原生物研究所;国家纳米科学中心中国科学院纳米标准与检测重点实验室;
  • 出版日期:2019-06-20
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(21176031);; 中央高校基本科研项目(591310829172201;310829172202;310829175001;310829165027)~~
  • 语种:中文;
  • 页:CLDB201912012
  • 页数:8
  • CN:12
  • ISSN:50-1078/TB
  • 分类号:60-67
摘要
以氧化钼(MoO_3)、硫(S)和氯化铌(NbCl_5)作为前驱体,利用一锅两步化学气相沉积法,在SiO_2基底上大面积地生长连续性好、均匀负载的Nb-MoS_2薄膜结构。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)表征可知薄层具有较好的连续性,同时使用拉曼光谱(Raman)、光致发光光谱(PL)和X射线光电子能谱(XPS)证实了掺杂后薄膜内部出现高达90 meV的蓝移现象。将薄膜制成场效应管(FET),并对其电学性能进行测试得出,场效应迁移率为1.22 cm~2·V~(-1)·s~(-1),电流开关比为10~5,并证实了当Nb掺杂入MoS_2薄膜后使得薄膜整体阻抗大幅降低,整体阻抗降低到66.67 kΩ,比未掺杂Nb的MoS_2薄膜降低了约40%。本工艺操作简单、成本低、重现率高,为制备高质量、大面积过渡金属掺杂的MoS_2薄膜光电学器件提供了新的途径。
        In this study, large-area growth of Nb-MoS_2 layers on SiO_2 substrates using one-pot chemical vapor deposition via two steps was successfully achieved. For the first time, a facile, cost-effective and mass-scalable direct synthesis approach was designed for doping Nb into MoS_2 layers using MoO_3, sulfur(S) and NbCl_5 as precursors. The proposed process allowed retaining the uniformity of large area thin layers which are sui-table for device fabrication. The structural and optical properties of the resulting Nb-MoS_2 layers were systematically investigated. Scanning electron microscope(SEM), atomic force microscope(AFM), Raman, photoluminescence(PL) spectra and X-ray photoelectron spectroscopy(XPS) analyses confirmed the formation of continuous and crystalline few-layers MoS_2 and Nb-MoS_2. An obvious blue-shift of up to 90 meV in photoluminescence peaks was observed for samples with different grain sizes. The electrical properties of the as-prepared materials were evaluated by bottom-gate FETs. A field-effect mobility of 1.22 cm~2·V~(-1)·s~(-1) and a current on/off ratio of 10~5 were obtained. In particular, Nb-MoS_2 prepared by Nb doping greatly reduced the resistance of the film to 66.67 kΩ. These findings provide a novel route towards scaled-up synthesis of high-quality few-layered MoS_2 by transition-metal doping in TMDCs which are suitable for electronic and optoelectronic devices.
引文
1 Xu M,Liang T,Shi M,et al.Chemical Reviews,2013,113(5),3766.
    2 Zhang K,Feng S,Wang J,et al.Nano Letters,2015,15(10),6586.
    3 Gao J,Kim Y D,Liang L,et al.Advanced Materials,2016,28(44),9735.
    4 Suh J,Park T E,Lin D Y,et al.Nano Letters,2014,14(12),6976.
    5 Lin Y C,Dumcenco D O,Komsa H P,et al.Advanced Materials,2014,26(18),2857.
    6 Zeng H,Dai J,Yao W,et al.Nature Nanotechnology,2012,7(8),490.
    7 Dolui K,Rungger I,Das Pemmaraju C,et al.Physical Review B,2013,88(7),4192.
    8 Naveh D,Ramasubramaniam A.Physical Review B,2013,87(19),2624.
    9 Ivanovskaya V V,Zobelli A,Gloter A,et al.Physical Review B,2008,78(13),134104.
    10 Suh J,Park T E,Lin D Y,et al.Nano Letters,2014,14(12),6976.
    11 Li H,Zhang G,Wang L.Journal of Physics D—Applied Physics,2016,49(9),095501.
    12 Shi Y,Huang J K,Jin L,et al.Scientific Reports,2013,3(5),1839.
    13 Sarkar D,Xie X,Kang J,et al.Nano Letters,2015,15(5),2852.
    14 Yang L,Majumdar K,Liu H,et al.Nano Letters,2014,14(11),6275.
    15 Lee Y H,Zhang X Q,Zhang W,et al.Advanced Materials,2012,24(17),2320.
    16 Park M,Park Y,Chen X,et al.Advance Materials,2016,28,2556.
    17 Yu Y,Li C,Liu Y,et al.Scientific Reports,2013,3(5),1866.
    18 Lee C,Yan H,Brus L E,et al.ACS Nano,2010,4(5),2695.
    19 Hai L,Yin Z,He Q,et al.Small,2012,8(1),63.
    20 Zhang K,Feng S,Wang J,et al.Nano Letters,2015,15(10),6586.
    21 Biesinger M C,Payne B P,Grosvenor A P,et al.Applied Surface Science,2011,257(7),2717.
    22 Fujita T,Ito Y,Tan Y,et al.Nanoscale,2014,6(21),12458.
    23 Mcguire G E,Schweitzer G K,Carlson T A.Chemischer Informations-dienst,DOI:10.1002/chin.197348010.
    24 Zande A M V D,Huang P Y,Chenet D A,et al.Nature Materials,2013,12(6),554.
    25 Duan X,Wang C,Shaw J C,et al.Nature Nanotechnology,2014,9(12),1024.
    26 Ovchinnikov D,Allain A,Huang Y S,et al.ACS Nano,2014,8(8),8174.
    27 Georgiou T,Jalil R,Belle B D,et al.Nature Nanotechnology,2013,8(2),100.
    28 Huang P Y,Ruizvargas C S,Am V D Z,et al.Nature,2011,469(7330),389.
    29 Mak K F,He K,Lee C,et al.Nature Materials,2013,12(3),207.
    30 Gao J,Li L,Tan J,et al.Nano Letters,2016,16(6),3780.
    31 Lin T W,Su C Y,Zhang X Q,et al.Small,2012,8(9),1384.
    32 Kaasbjerg K,Thygesen K S,Jacobsen K W.Physical Review B,2012,85(11),115317.
    33 Baugher B W H,Churchill H O H,Yang Y,et al.Nano Letters,2013,13(9),4212.
    34 Hussain S,Shehzad M A,Vikraman D,et al.Nanoscale,2016,8(7),4340.
    35 Das S R,Kwon J,Prakash A,et al.Applied Physics Letters,2015,106(8),147.
    36 Yoon Y,Ganapathi K,Salahuddin S.Nano Letters,2011,11(9),3768.
    37 Pu J,Yomogida Y,Liu K K,et al.Nano Letters,2012,12(8),4013.
    38 Zhang J,Yu H,Chen W,et al.ACS Nano,2014,8(6),6024.
    39 Xie S,Xu M,Liang T,et al.Nanoscale,2015,8(1),219.