基于卫星定位和惯导融合的模拟测绘系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Simulated Surveying and Mapping System Based on Satellite Positioning and INS Fusion
  • 作者:刘恒 ; 孙晋 ; 吴朝阳 ; 邰凡彬
  • 英文作者:LIU Heng;SUN Jin;WU Zhao-yang;TAI Fan-bin;School of Electronic & Information Engineering, Nanjing University of Information Science and Technology;
  • 关键词:惯性导航 ; 定位 ; 物联网 ; 测绘
  • 英文关键词:inertial navigation;;positioning;;Internet of things;;surveying and mapping
  • 中文刊名:IKJS
  • 英文刊名:Measurement & Control Technology
  • 机构:南京信息工程大学电子与信息工程学院;
  • 出版日期:2019-05-18
  • 出版单位:测控技术
  • 年:2019
  • 期:v.38;No.327
  • 基金:江苏省普通高校专业学位研究生实践创新计划项目(SJCX18_0323)
  • 语种:中文;
  • 页:IKJS201905030
  • 页数:6
  • CN:05
  • ISSN:11-1764/TB
  • 分类号:142-147
摘要
设计了一种基于北斗/GPS卫星定位和惯导融合的模拟测绘系统,用以对现有测绘方式进行补充。系统以履带车为信息采集移动平台,以STM32F103单片机为信息采集控制中心,用树莓派对测绘现场进行实时视频采集,以九轴MPU融合北斗/GPS双精度定位算法实现对采集点的精确定位,通过树莓派自带的WiFi和4G路由器实现数据上传服务器,通过地面站对履带车进行实时远程手动控制和自主路径规划。测试表明系统通过北斗/GPS卫星定位和惯导融合能满足一定的测绘需要,能对所测地面地形建立数字高程模型(digital elevation model)。
        A simulation surveying and mapping system based on Beidou/GPS satellite positioning and inertial navigation fusion is designed to supplement the existing surveying and mapping methods. The tracked vehicle was used as the mobile platform for information collection, STM32 F103 was used as the control center for information collection, raspberry party was used as the real-time video acquisition center for surveying and mapping site, and nine-axis MPU integrated Beidou/GPS dual-precision positioning algorithm was used to achieve precise positioning of the acquisition points. The data were uploaded to the server through the WiFi and 4 G routes of raspberry dispatch. Real-time remote manual control and autonomous path planning were implemented on the tracked vehicle through the ground station. Tests show that the system can meet certain surveying and mapping needs through Beidou/GPS satellite positioning and inertial navigation fusion, and can establish digital elevation model for terrain surveyed.
引文
[1]叶元旺.城市规划中城市测绘的作用[J].科技传播,2014,6(10):45.
    [2]纪亚洲,张华.ArcGIS技术在水利工程选址中的应用[J].浙江水利科技,2004,31(1):16-18.
    [3]王培法,王丽.数字髙程模型不确定性对地形参数和TOPMODEL的影响[J].南京信息工程大学学报(自然科学版),2010(6):541-547.
    [4]郭启云,杨加春,杨荣康,等.球载式下投国产北斗探空仪测风性能评估[J].南京信息工程大学学报(自然科学版),2018(5):629-640.
    [5]李益农,许迪,李福祥,等.GPS在农田土地平整地形测量中应用的初步研究[J].农业工程学报,2005,21(1):66-70.
    [6]贾振涛.GPS技术在实际地形控制测量中的实践运用研究[J].中国新技术新产品,2016,21(9):99-100.
    [7]刘道旭东.基于神经网络PID控制器的汽车自适应巡航控制系统研究[D].长春:吉林大学,2017.
    [8] Rehbinder H,Hu X M. Drift-free attitude estimation for accelerated rigidbodies[J]. Automatica, 2004,40(4):653-659.
    [9]黄鸿.双目立体视觉与惯导融合里程估计方法[D].杭州:浙江大学,2014.
    [10]王润民,胡锦超,任亮,等.基于多传感器的智能车辆姿态解算方法[J].测控技术,2016,35(9):15-19.
    [11]钱立胜.谈纬度渐长率(Lφ)[J].航海技术,2000,7(3):18-19.
    [12]周懿,汪小飞,田永锋,等.捷联惯导/北斗高精度组合导航方法研究[J].计算机测量与控制,2016,24(4):261-264.
    [13]范宇恒,王崴,杨洁,等.基于STM32的泵控马达恒速输出系统的设计[J].测控技术,2017,36(10):69-73.