一种超宽带10GHz微波光子雷达包络与相位联合运动误差估计方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Motion Error Estimation Method Joint Envelope and Phase for 10GHz Ultra-wideband Microwave Photonic-based SAR Image
  • 作者:陈潇翔 ; 邢孟道 ; 孙光才 ; 景国彬
  • 英文作者:CEHN Xiaoxiang;XING Mengdao;SUN Guangcai;JING Guobin;National Laboratory of Radar Signal Processing, Xidian University;Collaborative Innovation Center of Information Sensing and Understand,Xidian University;
  • 关键词:超宽带SAR ; 超高分辨SAR ; 空变运动误差估计 ; 微波光子雷达成像 ; 车载SAR
  • 英文关键词:Ultra-wideband SAR;;Ultra-high resolution SAR;;Space-variation motion estimation;;Microwave photonic-based radar;;Vehicle-borne SAR
  • 中文刊名:DZYX
  • 英文刊名:Journal of Electronics & Information Technology
  • 机构:西安电子科技大学雷达信号处理国家重点实验室;西安电子科技大学信息感知技术协同创新中心;
  • 出版日期:2019-01-30 15:17
  • 出版单位:电子与信息学报
  • 年:2019
  • 期:v.41
  • 基金:国家重点研发计划(2017YFC1405600);; 国家自然科学基金创新群体基金(61621005)~~
  • 语种:中文;
  • 页:DZYX201905009
  • 页数:8
  • CN:05
  • ISSN:11-4494/TN
  • 分类号:58-65
摘要
由于运动误差严重的2维空变性,对于10 GHz超宽带微波光子SAR,传统的直接从相位进行运动误差估计的方法估计精度不高。因此,该文提出一种包络与相位联合的超高分辨运动误差估计方法,能够在没有惯导信息时实现运动误差的精确估计。该方法首先在距离徙动矫正(RCMC)之前,通过对包络对齐算法(RAA)提取的包络信息采用最小二乘算法(LSA)与梯度下降算法(GDA)获得近似的3维运动误差。接着,对粗补偿与RCMC之后的数据,先消除方位相位空变,然后采用两维空变的相位误差估计方法获得剩余运动误差的精确估计。仿真和车载微波光子雷达实测数据验证了该方法的有效性。
        Due to the 2-D vacancies with serious motion errors when processing 10 GHz ultra-wideband microwave photonic-based SAR, current motion error estimation methods directly estimating with phase error can not obtain correct estimation result in this paper. An ultra-high resolution SAR motion error estimation method jointing envelope and phase is proposed, which can realize accurate estimation of motion error without inertial information. Firstly, the approximate 3-D motion error is obtained by applying the Least Squares Algorithm(LSA) and the Gradient Descent Algorithm(GDA) to the envelope information extracted by the Range Alignment Algorithm(RAA) before Range Curve Migration Correction(RCMC). Then, phase-based motion error estimation is performed on the data after rough compensation and RCMC. After eliminating the azimuth variant phase error, the 2-D space-variant phase error estimation method is used to obtain accurate estimation of residual motion error. Processing of simulated data and real data acquired from vehicle-borne microwave photonic-based radar validates the effectiveness of the proposed method.
引文
[1]FORNARO G.Trajectory deviations in airborne SAR:Analysis and compensation[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):997-1009.doi:10.1109/7.784069.
    [2]FORNARO G,FRANCESCHETTI G,and PERNA S.On center-beam approximation in SAR motion compensation[J].IEEE Geoscience and Remote Sensing Letters,2006,3(2):276-280.doi:10.1109/lgrs.2005.863391.
    [3]MAO Xinhua,ZHU Daiyin,and ZHU Zhaoda.Polar format algorithm wavefront curvature compensation under arbitrary radar flight path[J].IEEE Geoscience and Remote Sensing Letters,2012,9(3):526-530.doi:10.1109/lgrs.2011.2173291.
    [4]YANG Lei,XING Mengdao,WANG Yong,et al.Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J].IEEE Geoscience and Remote Sensing Letters,2013,10(1):165-169.doi:10.1109/lgrs.2012.2196676.
    [5]MAO Xinhua,HE Xueli,DING Lan,et al.Ultra-high resolution(0.05 m)SAR image formation processing[C].IEEE ISAP,Phuket,Thailand,2017:1-2.doi:10.1109/isanp.2017.8228773.
    [6]BERNNER A.Ultra-high resolution airborne SAR imaging of vegetation and man-made objects based on 40-relative bandwidth in X-band[C].IGARSS,Munich,Germany,2012:7397-7400.doi:10.1109/igarss.2012.6351920.
    [7]ZHANG Lei,WANG Guanyong,QIAO Zhijun,et al.Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging[J].IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing,2017,10(1):184-193.doi:10.1109/jstars.2016.2577588.
    [8]CHEN Jianlai,XING Mengdao,SUN Guangcai,et al.A 2-Dspace-variant motion estimation and compensation method for ultrahigh-resolution airborne stepped-frequency SAR with long integration time[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(11):6390-6401.doi:10.1109/tgrs.2017.2727060.
    [9]CANTALLOUBE H.SAR retrieval of a ship vertical profile from her roll and pitch motion[C].European Conference on Synthetic Aperture Radar,Offenbach,Germany,2014:1-4.
    [10]YANG Mingdong,ZHU Daiyin,and SONG Wei.Comparison of two-step and one-step motion compensation algorithms for airborne synthetic aperture radar[J].Electronics Letters,2015,51(14):1108-1110.doi:10.1049/el.2015.1350.
    [11]REIGBER A,ALIVIZATOS E,POTSIS A,et al.Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation[J].IEE ProceedingsRadar,Sonar and Navigation,2006,153(3):301-310.doi:10.1049/ip-rsn:20045087.
    [12]XU Gang,XING Mengdao,ZHANG Lei,et al.Robust autofocusing approach for highly squinted SAR imagery using the extended wavenumber algorithm[J].IEEETransactions on Geoscience and Remote Sensing,2013,51(10):5031-5046.doi:10.1109/tgrs.2013.2276112.
    [13]HONGBON J.Aperture synthesis with a non-regular distribution of interferometer baselines[J].Astronomy and Astrophysics Supplement series,1974,15(3):417-426.
    [14]ZHOU Song,YANG Lei,ZHAO Lifan,et al.Forward velocity extraction from UAV raw SAR data based on adaptive notch filtering[J].IEEE Geoscience and Remote Sensing Letters,2016,13(9):1211-1215.doi:10.1109/lgrs.2016.2576359.
    [15]WEHNER D.High Resolution Radar[M].Norwood:Ma Artech House Inc P,1987.
    [16]CHEN Chungching and ANDREWS C.Target-motioninduced radar imaging[J].IEEE Transactions on Aerospace and Electronic Systems,1980,16(1):2-14.doi:10.1109/taes.1980.308873.
    [17]WANG Kun,LUO Lin,and BAO Zhen.Global optimum method for alignment in ISAR imagery[C].Radar Systems,Edinburgh,Britain,1997:233-235.doi:10.1049/cp:19971668.
    [18]WO Jianghai,WANG anle,ZHANG Jin,et al.Wideband tunable microwave generation using a dispersion compensated optoelectronic oscillator[C].IEEE OECC and PGC,2017:1-2.doi:10.1109/oecc.2017.8114928.
    [19]LAGHEZZA F,SCOTTI F,ONORI D,et al.ISAR imaging of non-cooperative targets via dual band photonics-based radar system[C].IEEE International Radar Symposium,Philadelphia,American,2016:1-4.doi:10.1109/irs.2016.7497319.