不同晶相TiO_2负载Cu_2O催化甲醛乙炔化反应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formaldehyde Ethynylation Reaction over Cu_2O Supported on TiO_2 with Different Phases
  • 作者:王志鹏 ; 牛珠珠 ; 班丽君 ; 郝全爱 ; 张鸿喜 ; 李海涛 ; 赵永祥
  • 英文作者:WANG Zhipeng;NIU Zhuzhu;BAN Lijun;HAO Quanai;ZHANG Hongxi;LI Haitao;ZHAO Yongxiang;Engineering Research Center of Ministry of Education for Fine Chemicals,School of Chemistry and Chemical Engineering,Shanxi University;
  • 关键词:Cu2O/TiO2 ; 晶相结构 ; 甲醛乙炔化 ; 1 ; 4-丁炔二醇
  • 英文关键词:Cu2O/TiO2;;Phase structure;;Formaldehyde ethynylation;;1,4-Butynediol
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:山西大学化学化工学院精细化学品教育部工程研究中心;
  • 出版日期:2019-02-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(批准号:U1710221,21503124);; 山西省国际科技合作项目(批准号:201703D421034)资助~~
  • 语种:中文;
  • 页:GDXH201902018
  • 页数:8
  • CN:02
  • ISSN:22-1131/O6
  • 分类号:142-149
摘要
分别以金红石相和锐钛矿相TiO_2为载体,采用液相还原-沉积法制备了Cu_2O/TiO_2催化剂.采用氮气物理吸附-脱附(N2-physisorption)实验、氢气程序升温还原(H2-TPR)、X射线衍射(XRD)、X射线光电子能谱(XPS)、CO红外光谱(CO-IR)及高分辨透射电子显微镜(HRTEM)等技术,研究了不同晶相TiO_2载体对Cu_2O/TiO_2结构及其催化甲醛乙炔化反应性能的影响.结果表明,以金红石相TiO_2为载体的催化剂炔化活性明显高于以锐钛矿相TiO_2为载体的催化剂,原因在于金红石相TiO_2主要暴露(110)晶面,其与铜物种的配位环境及较高的空位密度形成了更多的Cu—O—Ti结构物种,表现为Cu_2O与TiO_2之间强的相互作用.这导致Cu_2O高效转变为乙炔亚铜活性物种,并保持了较高的分散度与稳定性,抑制了过度还原物种金属Cu的生成,进而使催化剂表现出较高的催化性能.
        Cu_2O/TiO_2 catalysts with anatase and rutile titania as supports were prepared by liquid reductiondeposition-precipitation method and applied in 1,4-butynediol synthesis by formaldehyde ethynylation reaction.Effects of different TiO_2 polymorphs on structure and catalytic performance of catalyst were investigated,combined with N2 physical adsorption-desorption,H2-temperature programmed reduction( H2-TPR),high resolution transmission electron microscopy( HRTEM),X-ray diffraction( XRD),X-ray photoelectron spectroscopy( XPS) and CO infrared spectroscopy( CO-IR). The results showed that the ethynylation activity of catalyst with rutile TiO_2 as support was obviously higher than that of anatase TiO_2 as support. This was mainly due to the different surface structures originated from the different crystalline structures of the as-prepared TiO_2. The( 110) planes were preferentially exposed planes for rutile TiO_2. Compared with anatase TiO_2,the higher density vacant sites and different coordination structures of copper species on rutile( 110) planes facilitated the formation of more Cu—O—Ti structures,exhibiting stronger interaction between Cu_2O and the support. Meanwhile,the stronger interaction between Cu_2O and rutile efficiently retained the dispersion of active species and stablized the valence of Cu+,leading to a higher catalytic performance.
引文
[1] Zhong C. R.,Lu A.,Oilfield Chem.,2000,17(3),285—288(钟传蓉,卢艾.油田化学,2000,17(3),285—288)
    [2] Li H. T.,Zhao Y. X.,Gao C. G.,Wang Y. Z.,Sun Z. J.,Liang X. Y.,Chem. Eng. J.,2012,181/182,501—507
    [3] Nadgeri J. M.,Telkar M. M.,Rode C. V.,Catal. Commun.,2008,9(3),441—446
    [4] Zhang Q.,Zhang Y.,Li H. T.,Gao C. G.,Zhao Y. X.,Appl. Catal. A,2013,466,233—239
    [5] Haas T.,Jaeger B.,Weber R.,Mitchell S. F.,King C. F.,Appl. Catal. A,2005,280(1),83—88
    [6] Cheng J. S.,Jiang H. F.,Zhang Q. J.,Ouyang X. Y.,Guangzhou Chemistry,2003,28(1),1—4(程金生,江焕峰,张群健,欧阳小月.广州化学,2003,28(1),1—4)
    [7] Yang G. H.,Xu Y. B.,Su X. T.,Xie Y. H.,Yang C.,Dong Z. J.,Wang J. D.,Ceram. Int.,2014,40(3),3969—3973
    [8] Luo P.,Zhao X. M.,Li H. X.,Zhang H.,Li Y. H.,Lv X. W.,Li X. D.,Chem. Eng. Design Commun.,2012,38(5),87—93(罗平,赵新明,李海侠,张浩,李耀会,吕小婉,李小定.化工设计通讯,2012,38(5),87—93)
    [9] Wang J. Y.,Jiang Y.,Xie J. C.,Chen J. H.,Zhang X. X.,Jiang W.,Chin. J. Synth. Chem.,2010,18(B09),26—29(王娟芸,蒋毅,谢建川,陈君和,张小霞,蒋伟.合成化学,2010,18(B09),26—29)
    [10] Zheng Y.,Sun Z. J.,Wang Y. Z.,Li H. T.,Wang S. A.,Luo M.,Zhao J. L.,Zhao Y. X.,J. Mol. Catal.,2012,26(3),233—238(郑艳,孙自瑾,王永钊,李海涛,王韶安,罗敏,赵吉龙,赵永祥.分子催化,2012,26(3),233—238)
    [11] Wang J. J.,Li H. T.,Ma Z. Q.,Wang Z. P.,Guo J. Y.,Zhao Y. X.,J. Chem. Ind. Eng.,2015,66(6),2098—2104(王俊俊,李海涛,马志强,王志鹏,郭江渊,赵永祥.化工学报,2015,66(6),2098—2104)
    [12] Ma Z. Q.,Zhang H. X.,Li H. T.,Wu R. F.,Wang J. J.,Guo J. Y.,Wang Z. P.,Zhao Y. X.,Ind. Catal.,2015,23(5),344—348(马志强,张鸿喜,李海涛,吴瑞芳,王俊俊,郭江渊,王志鹏,赵永祥.工业催化,2015,23(5),344—348)
    [13] Yang G. F.,Li H. T.,Zhang H. X.,Wang Z. P.,Liu L. L.,Zhao Y. X.,J. Mol. Catal.,2016,30(6),540—546(杨国峰,李海涛,张鸿喜,王志鹏,刘琳丽,赵永祥.分子催化,2016,30(6),540—546)
    [14] Li H. T.,Niu Z. Z.,Yang G. F.,Zhang H. X.,Wang Z. P.,Zhao Y. X.,J. Chem. Ind. Eng.,2018,69(6),2512—2518(李海涛,牛珠珠,杨国锋,张鸿喜,王志鹏,赵永祥.化工学报,2018,69(6),2512—2518)
    [15] Oishi T.,Katayama T.,Yamaguchi K.,Mizuno N.,Chem. Eur. J.,2009,15,7539—7542
    [16] A S.,Zheng J. W.,Liu J. M.,Bai J.,Yang J. C.,Zhang Q. C.,Chem. J. Chinese Universities,2017,38(8),1450—1457(阿山,郑家威,刘聚明,白杰,杨桔材,张前程.高等学校化学学报,2017,38(8),1450—1457)
    [17] Meng Z. Y.,Zhang Y.,Zhao L. L.,Zhang H. X.,Zhao Y. X.,Chem. J. Chinese Universities,2015,36(9),1779—1785(孟志宇,张因,赵丽丽,张鸿喜,赵永祥.高等学校化学学报. 2015,36(9),1779—1785)
    [18] Wang Y.,Widmann D.,Heenemann M.,Diemant T.,Biskupek J.,Schl9gl R.,Behm R. J.,J. Catal.,2017,354,46—60
    [19] Shah P.,Bhange D. S.,Deshpande A. S.,Chem. Phys.,2009,117,399—407
    [20] Widchaya R.,Araya T.,Ratchaneekorn W.,Chem. Res. Chinese Universities,2014,30(1),149—156
    [21] Saadi A.,Merabti R.,Rassoul Z.,Bettahar M. M.,J. Mol. Catal.,2006,253(1/2),79—85
    [22] Xie G. Q.,Liu X. J.,Tao L. P.,Lu J. Q.,Luo M. F.,Li X. N.,Chinese J. Catal.,2009,30(6),543—548(谢冠群,刘西敬,陶丽萍,鲁继青,罗孟飞,李小年.催化学报,2009,30(6),543—548)
    [23] Li Y. Z.,Xu B. L.,Fan Y. N.,Feng N. Y.,Qiu A. D.,Miao J. W.,He J.,Yang H. P.,Chen Y.,J. Mol. Catal. A:Chem.,2004,216,107—114
    [24] Chen J. S.,Tan Y. L.,Li C. M.,J. Am. Chem. Soc.,2010,132,6124—6130
    [25] Li Y. Z.,Xu B. L.,Fan Y. N.,Chen Y.,J. Mol. Catal. A:Chem.,2004,216,107—114
    [26] Zhu H. Y.,Dong L.,Chen Y.,J. Colloid Interface Sci.,2011,357,497—503
    [27] Zhu Y. F.,Zhu Y. L.,Ding G. Q.,Zhu S. H.,Zheng H. Y.,Li Y. H.,Appl. Catal. A,2013,468,296—304
    [28] Liu Y. X.,Wang Z. L.,Huang W. X.,Appl. Surf. Sci.,2016,389,760—767
    [29] Wang Z. L.,Liu Q. S.,Yu J. F.,Wu T. H.,Wang G. J.,Appl. Catal. A,2003,239,87—94
    [30] Platzman I.,Brener R.,Haick H.,Tannenbaum P.,J. Phys. Chem. C,2008,112,1101—1108
    [31] Lu Y.,Zhang X.,Chu Y. C.,Yu H. B.,Huo M. X.,Qu J.,Huo H. L.,Yuan X.,Appl. Catal. B,2018,224,239—248
    [32] Hensel J.,Wang G.,Li Y.,Zhang J. Z.,Nano Lett.,2010,10,478—483
    [33] Park S. M.,Razzaq A.,Park Y. H.,Sorcar S.,Park Y.,Grimes C. A.,ACS Omega,2016,1,868—875
    [34] Chen Y.,Zhang L. F.,Catal. Lett.,1992,12,51—62
    [35] Zhu H. Y.,Wu Y.,Zhao X.,Wan H. Q.,Yang L. J.,Hong J. M.,Yu Q.,Dong L.,Chen Y.,Jian C.,Wei J.,Xu P. H.,J. Mol.Catal. A:Chem.,2006,243,24—30
    [36] Giordano L.,Pacchioni G.,Bredow T.,Sanz J. F.,Surf. Sci.,2001,471,21—31
    [37] Wu G.,Guan N.,Li L.,Catal. Sci. Technol.,2011,1,601—608
    [38] Chen C. S.,Chen T. C.,Chen C. C.,Langmuir,2012,28,9996—10006
    [39] Trotu爧I. T.,Zimmermann T.,Schüth F.,Chem. Rev.,2014,114,1761—1782
    [40] Hornes A.,Bera P.,Camara A. L.,Gamarra D.,Munuera G.,Martinez-Arias A.,J. Catal.,2009,268,367—375
    [41] Manzoli M.,Monte R. D.,Boccuzzi F.,Coluccia S.,Ka2par J.,Appl. Catal. B,2005,61,192—205
    [42] Boccuzzi F.,Ghiotti G.,Chiorino A.,Surf. Sci.,1985,162,361—367
    [43] Scarano D.,Bordiga S.,Lamberti C.,Spoto G.,Ricchiardi G.,Zecchina A.,Otero A. C.,Surf. Sci.,1998,411,272—285
    [44] Guo X. L.,Zhou R. X.,Catal. Sci. Technol.,2016,6,3862—3871
    [45] Kalies H.,Pinto N.,Pajonk G. M.,Bianchi D.,Appl. Catal. A,2000,202,197—205
    [46] Sun C. Z.,Zhu J.,Lv Y. Y.,Qi L.,Liu B.,Gao F.,Sun K. Q.,Dong L.,Chen Y.,Appl. Catal. B,2011,103,206—220