基于滑模变结构电驱动防滑刹车控制系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of the control system of electric drive anti-skid braking system based on sliding mode variable structure
  • 作者:张庆利 ; 孔文秦 ; 彭波 ; 张涛 ; 徐方舟
  • 英文作者:Zhang Qingli;Kong Wenqin;Peng Bo;Zhang Tao;Xu Fangzhou;Research and Development Center of China Academy of Launch Vihicle Technology;
  • 关键词:滑模变结构 ; 电驱动 ; 起落架 ; 防滑刹车 ; 控制系统
  • 英文关键词:synovial variable structure;;electric drive;;landing gear;;anti-skid brake;;control system
  • 中文刊名:GJSX
  • 英文刊名:Chinese High Technology Letters
  • 机构:中国运载火箭技术研究院研究与发展中心;
  • 出版日期:2019-03-15
  • 出版单位:高技术通讯
  • 年:2019
  • 期:v.29;No.339
  • 语种:中文;
  • 页:GJSX201903008
  • 页数:9
  • CN:03
  • ISSN:11-2770/N
  • 分类号:59-67
摘要
为提高飞机起落架防滑刹车系统的效率和可靠性,针对刹车系统的复杂性及非线性的特点,提出了基于滑模变结构的全电驱动刹车防滑控制系统方案;将滑模变结构的机电设备力闭环的控制策略应用于全电驱动起落架刹车系统,以提高系统响应频率和刹车力闭环控制精度。通过惯性台刹车试验对设计的防滑刹车控制器及其控制策略进行验证。试验结果表明,设计的电刹车系统带宽由传统算法的2.5 Hz提高到7 Hz,力闭环控制精度由7.5%FS提高到2.0%FS。
        In order to improve the efficiency and reliability of the aircraft's landing gear anti-skid braking system, the scheme of the all-electric anti-skid braking control system based on sliding mode variable structure is proposed, aiming at the complexity and nonlinear characteristics of the braking system. The force closed-loop control strategy of mechanical and electrical equipment with sliding mode variable structure is applied to the all-electric drive landing gear braking system to improve the system response frequency and the closed-loop control accuracy of braking force. The design of the anti-skid brake controller and its control strategy are verified by the inertial brake test. The test results show that the bandwidth of the designed electric brake system is increased from 2.5 Hz of the traditional algorithm to 7 Hz, and the force closed-loop control accuracy is increased from 7.5% FS to 2.0% FS.
引文
[1] 李波. 飞机防滑刹车系统关键技术研究[D]. 北京: 北京航空航天大学自动化科学与电气工程学院, 2008
    [2] 王纪森. 非线性控制理论在防滑刹车系统中的应用研究[D]. 西安: 西北工业大学机电学院, 2001
    [3] 高泽迥. 飞机设计手册: 起飞着陆系统设计[M]. 北京:航空工业出版社, 2002
    [4] Tanner J A, Stubbs S M. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces: a slip-ratio-controlled system with ground speed reference from unbraked nose wheel [J]. Brakes, 1977. 35-42
    [5] Mcgowan J A. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways, NASA-CR-145281[R]. Washington: NASA, 1978
    [6] Barnes A G. Simulator Assessment of Take-off and Landing[M]. Paris: Advisory Group for Aeronautical Research and Development, 1963
    [7] Barnes A G, Yager T J. Simulation of aircraft behaviour on and close to the ground, NASA-TM-87460[R]. Washington: NASA, 1985
    [8] Hitch H. Aircraft ground dynamics [J]. Vehicle System Dynamics, 1981, 10(4-5): 319-332
    [9] Khapane P D. Simulation of asymmetric landing and typical ground maneuvers for large transport aircraft[J]. Aerospace Science and Technology, 2003, 7(8): 611-619
    [10] Clark S K. Mechanics of pneumatic tires[J]. Technical Report Archive & Image Library, 1971,78(3): 68
    [11] Pacejka H B. In-plane and out-of-plane dynamics of pneumatic tyres[J]. Vehicle System Dynamics, 1981, 10(4-5): 221-251
    [12] Szostak H, Rosenthal T, Wade A R. An interactive tire model for driver vehicle simulation, STI-TR-1227-1-V2[R]. Alexandria: National Technical Information Service, 1988
    [13] Pacejka H B, Sharp R S. Shear force development by pneumatic tyres in steady state conditions: a review of modelling aspects[J]. Vehicle System Dynamics, 1991, 20(3-4): 121-175
    [14] Takahashi T, Pacejka H B. Cornering on uneven roads[J]. Vehicle System Dynamics, 1988, 17(S1): 469-480
    [15] 徐冬苓, 李玉忍. 飞机起落架数学模型的研究 [J]. 系统仿真学报, 2005,17(4): 831-833
    [16] 李玉忍, 薛晶, 马瑞卿, 等. 飞机制动过程滑移率寻优方法研究 [J]. 西北工业大学学报, 2008, 26(4): 488-491
    [17] 马继杰. 制动器惯性台架电模拟惯量性能和关键技术研究 [D]. 长春:吉林大学机电学院, 2010