β-半乳糖苷酶的微生物细胞表面展示及其应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Overview of microbial cell surface display of β-galactosidase and its application
  • 作者:蒋晓敏 ; 王贺 ; 王允祥 ; 钱永常 ; 尹良鸿 ; 范丽
  • 英文作者:JIANG Xiaomin;WANG He;WANG Yunxiang;QIAN Yongchang;YIN Lianghong;FAN Li;School of Agricultural and Food Sciences, Zhejiang A&F University;Jiyang College, Zhejiang A&F University;School of Forestry and Biotechnology, Zhejiang A&F University;
  • 关键词:β-半乳糖苷酶 ; 表面展示 ; 全细胞催化剂
  • 英文关键词:β-galactosidase;;surface display;;whole cell catalyst
  • 中文刊名:SPFX
  • 英文刊名:Food and Fermentation Industries
  • 机构:浙江农林大学农业与食品科学学院;浙江农林大学暨阳学院;浙江农林大学林业与生物技术学院;
  • 出版日期:2018-09-10 16:25
  • 出版单位:食品与发酵工业
  • 年:2019
  • 期:v.45;No.379
  • 基金:国家自然科学基金青年科学基金项目(31701535)
  • 语种:中文;
  • 页:SPFX201907043
  • 页数:7
  • CN:07
  • ISSN:11-1802/TS
  • 分类号:298-304
摘要
β-半乳糖苷酶是一种在乳制品生产、医药、生化分析等领域得到广泛应用的酶制剂。商品化β-半乳糖苷酶多以游离形式存在,但游离的β-半乳糖苷酶制造过程复杂、稳定性低、易失活、有机溶剂耐受性差、重复利用率低,这些制约因素限制了β-半乳糖苷酶的进一步应用。将β-半乳糖苷酶通过基因工程技术固定在微生物细胞表面,该系统的优点有:1)在工业生产过程中,无需经复杂的分离纯化和固定化操作,成本低;2)稳定性高、有机溶剂耐受性强,既可用于反应条件温和又能满足复杂体系、反应条件剧烈的催化需求;3)拓展β-半乳糖苷酶在蛋白质工程研究、生物传感器制造等领域的应用。β-半乳糖苷酶表面展示所用宿主包括乳酸菌、酵母和芽孢,该文分别综述这3种宿主中β-半乳糖苷酶表面展示系统的研究进展及其在酶的生产、作为报告蛋白和全细胞生物催化方面的应用。
        β-galactosidase is an important industrial enzyme with broad applications in dairy production, medicine and biochemical analysis. The most commercially available β-galactosidase is generally made in free form. However, the free β-galactosidase requires complex production steps and often shows low stability, easy inactivation, poor tolerance to organic solvents, and poor reusability, which restrict its use in industrial application. The microbial cell surface display technology that enables the expression of β-galactosidase on the cell surface through genetic engineering confers several advantages: 1) there is no need for complicated purification and immobilization steps during industrial production process, thus lowering the cost; 2) owing to its good stability and excellent resistance to organic solvents, cell-surface displayed β-galactosidase can be used as an catalyst under both mild and harsh conditions; 3) widens its application feilds in protein engineering and biosensor. The hosts used for surface display of β-galactosidase include lactic acid bacteria, yeast and spore. In this paper, recent progress on microbial cell surface display for β-galactosidase and its application in enzyme production, acting as an report protein as well as whole cell biocatalysis were summarized.
引文
[1] 贺璐,龙承星,刘又嘉,等.微生物乳糖酶研究进展[J].食品与发酵工业,2017,43(6):268-273.
    [2] LEE S Y,CHOI J H,XU Zhaohu.Microbial cell-surface display[J].Trends in Biotechnology,2003,21(1):45-52.
    [3] KWON S J,JUNG H C,PAN J G.Transgalactosylation in a water-solvent biphasic reaction system with β-galactosidase displayed on the surfaces of Bacillus subtilis spores[J].Applied and Environmental Microbiology,2007,73(7):2 251-2 256.
    [4] MICHON C,LANGELLA P,EIJSINK V G H,et al.Display of recombinant proteins at the surface of lactic acid bacteria:strategies and applications[J].Microbial Cell Factories,2016,15(1):70.
    [5] HYN?NEN U,PALVA A.Lactobacillus surface layer proteins:structure,function and applications[J].Applied Microbiology and Biotechnology,2013,97(12):5 225-5 243.
    [6] HU Shumin,KONG Jian,SUN Zhilan,et al.Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein[J].Microbial Cell Factories,2011,10(1):86.
    [7] HU Shumin,KONG Jian,KONG Wentao,et al.Characterization of a novel LysM domain from Lactobacillus fermentum bacteriophage endolysin and its use as an anchor to display heterologous proteins on the surfaces of lactic acid bacteria[J].Applied and Environmental Microbiology,2010,76(8):2 410-2 418.
    [8] VISWESWARAN G R,LEENHOUTS K,VAN R M,et al.Exploiting the peptidoglycan-binding motif,LysM,for medical and industrial applications[J].Applied Microbiology and Biotechnology,2014,98(10):4 331-4 345.
    [9] XU W,HUANG M,ZHANG Y,et al.Novel surface display system for heterogonous proteins on Lactobacillus plantarum[J].Letters in Applied Microbiology,2011,53:641-648.
    [10] WIECZOREK A S,MARTIN V J.Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis[J].Microbial Cell Factories,2012,11(1):160.
    [11] GAI S A,WITTRUP K D.Yeast surface display for protein engineering and characterization[J].Current Opinion in Structural Biology,2007,17(4):467-473.
    [12] K?NNING D,KOLMAR H.Beyond antibody engineering:directed evolution of alternative binding scaffolds and enzymes using yeast surface display[J].Microbial Cell Factories,2018,17(1):32.
    [13] LI Yumei,LU Lili,WANG Hongmei,et al.Cell surface engineering of a β-galactosidase for galactooligosaccharide synthesis[J].Applied and Environmental Microbiology,2009,75(18):5 938-5 942.
    [14] AN Jin,ZHANG Lebin,LI Lijuan,et al.An alternative approach to synthesizing galactooligosaccharides by cell-surface display of β-galactosidase on Yarrowia lipolytica[J].Journal of Agricultural and Food Chemistry,2016,64(19):3 819-3 827.
    [15] KIM J,SCHUMANN W.Display of proteins on Bacillus subtilis endospores[J].Cellular and Molecular Life Sciences,2009,66(19):3 127-3 136.
    [16] ISTICATO R,RICCA E.Spore surface display[J].Microbiology Spectrum,2014,2(5):TBS-0011-2012.doi:10.1128/microbiolspec.TBS-0 011-2 012.
    [17] WANG He,WANG Yunxiang,YANG Ruijin.Recent progress in Bacillus subtilis spore-surface display:concept,progress,and future[J].Applied Microbiology and Biotechnology,2017,101(3):933-949.
    [18] SIREC T,STRAZZULLI A,ISTICATO R,et al.Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis[J].Microbial Cell Factories,2012,11(1):100.
    [19] KIM J H,KIM B G,CHOI S K,et al.Method for expression of proteins on spore surface:US,US7582426[P].2009-09-01.
    [20] HWANG B Y,PAN J G,KIM B G,et al.Functional display of active tetrameric β-galactosidase using Bacillus subtilis spore display system[J].Journal of Nanoscience and Nanotechnology,2013,13(3):2 313-2 319.
    [21] 王贺,杨瑞金,华霄,等.利用枯草芽孢衣壳蛋白表面展示β-半乳糖苷酶[J].食品与发酵工业,2012,38(7):1-5.
    [22] WANG He,YANG Ruijin,HUA Xiao,et al.Functional display of active β-galactosidase on Bacillus subtilis spores using crust proteins as carriers[J].Food Science and Biotechnology,2015,24(5):1 755-1 759.
    [23] WANG He,YANG Rui-jin,HUA Xiao,et al.An approach for lactulose production using the CotX-mediated spore-displayed β-galactosidase as a biocatalyst[J].Journal of Microbiology and Biotechnology,2016,26(7):1 267-1 277.
    [24] TAVASSOLI S,HINC K,IWANICKI A,et al.Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst[J].Archives of Microbiology,2013,195(3):197-202.
    [25] PAN J G,CHOI S K,JUNG H C,et al.Display of native proteins on Bacillus subtilis spores[J].FEMS Microbiology Letters,2014,358(2):209-217.
    [26] PARK T J,CHOI S K,JUNG H C,et al.Spore display using Bacillus thuringiensis exosporium protein InhA[J].Journal of Microbiology and Biotechnology,2009,19(5):495-501.
    [27] BAE J,CHOI E H,PAN J G.Efficient synthesis of octyl-β-D-galactopyranoside by Bacillus spore-displayed β-galactosidase using an amphiphilic 1,2-dimethoxyethane co-solvent[J].Enzyme and Microbial Technology,2011,48(3):232-238.
    [28] CHEN Long,HOLMES M,SCHAEFER E,et al.Highly active spore biocatalyst by self-assembly of co-expressed anchoring scaffoldin and multimeric enzyme[J].Biotechnology and Bioengineering,2018,115(3):557-564.