基于光程分布方法校正植物叶绿素荧光的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Correction of Effect of Plant Chlorophyll Fluorescence Based on Optical Path Distribution Method
  • 作者:蒋芸 ; 叶函函 ; 王先华 ; 吴浩 ; 吕松 ; 李勤勤 ; 吴时超 ; 吴军
  • 英文作者:Jiang Yun;Ye Hanhan;Wang Xianhua;Wu Hao;Lü Song;Li Qinqin;Wu Shichao;Wu Jun;Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;University of Science and Technology of China;
  • 关键词:大气光学 ; 二氧化碳 ; 荧光 ; 辐射 ; 反演
  • 英文关键词:atmospheric optics;;carbon dioxide;;fluorescence;;irradiation;;retrieval
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:中国科学院安徽光学精密机械研究所通用光学定标与表征技术重点实验室;中国科学技术大学;
  • 出版日期:2018-12-27 11:13
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.445
  • 基金:国家重点研发计划(2017YFB0504000,2017YFB0504001);; 高分辨对地观测系统重大专项(民用部分)(32-Y20A17-9001-15/17);; 国家自然科学基金(41601393,41505020);; 中国科学院合肥物质科学研究院“十三五”规划重点支持项目
  • 语种:中文;
  • 页:GXXB201904006
  • 页数:6
  • CN:04
  • ISSN:31-1252/O4
  • 分类号:50-55
摘要
基于全球植被的荧光分布,利用GOSAT数据,同步反演了光子光程概率分布密度函数因子和755 nm处的荧光强度,将反演结果与TCCON站点的结果进行了对比。结果表明:对于受植物叶绿素荧光影响较大的Park Falls(45.9°N,90.3°W)站点附近的GOSAT数据,考虑荧光影响前后的二氧化碳(CO_2)反演结果的最大偏差为1.6×10~(-6);对于受荧光影响稍小的Sodankyla(67.4°N,26.6°E)站点附近的GOSAT数据,最大偏差为0.8×10~(-6),散射校正荧光影响可以使平均误差缩小到0.1×10~(-6)左右。
        Based on global vegetation fluorescence distribution, photon path probability distribution density function factor and the fluorescence intensity at 755 nm are synchronously inverted with GOSAT data. The inversion results are compared with the results of TCCON site. The results show that for the GOSAT data near the Park Falls(45.9°N, 90.3°W) site, which is greatly affected by plant chlorophyll fluorescence, the maximum deviation between CO_2 inversion results before and after considering the effect of fluorescence is 1.6×10~(-6). While for the GOSAT data of near Sodankyla site which is slightly affected by fluorescence, the maximum deviation is 0.8×10~(-6). The scattering correction of the fluorescence effect can reduce the average error to about 0.1×10~(-6).
引文
[1] Liu Y,Lü D R,Chen H B,et al.Advances in technologies and methods for satellite remote sensing of atmospheric CO2[J].Remote Sensing Technology and Application,2011,26(2):247-254.刘毅,吕达仁,陈洪滨,等.卫星遥感大气CO2的技术与方法进展综述[J].遥感技术与应用,2011,26(2):247-254.
    [2] Vydrov O A,Heyd J,Krukau A V,et al.Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals[J].The Journal of Chemical Physics,2006,125(7):074106.
    [3] Bril A,Oshchepkov S,Yokota T.Correction of atmospheric scattering effects in space-based observations of carbon dioxide:model study of desert dust aerosol[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2008,109(10):1815-1827.
    [4] Zou M M,Chen L F,Tao J H,et al.Accuracy analysis of PPDF-based method to aerosol scattering effect[J].Scientia Sinica(Terrae),2013,43(12):2062-2071.邹铭敏,陈良富,陶金花,等.基于PPDF方法的气溶胶散射效应参数化模型精度评估[J].中国科学:地球科学,2013,43(12):2062-2071.
    [5] Duan F H,Wang X H,Ye H H,et al.Carbon dioxide retrieval method based on statistics and optical path distribution[J].Acta Optica Sinica,2017,37(5):0501003.段锋华,王先华,叶函函,等.基于统计与光程分布的二氧化碳反演方法[J].光学学报,2017,37(5):0501003.
    [6] Jiang Y,Ye H H,Wang X H,et al.Influence of chlorophyll fluorescence on the retrieval accuracy of carbon dioxide[J].Spectroscopy and Spectral Analysis,2018,38(3):0901004.蒋芸,叶函函,王先华,等.植物叶绿素荧光对CO2反演精度的影响[J].光谱学与光谱分析,2018,38(3):0901004.
    [7] Bril A,Oshchepkov S,Yokota T.Application of a probability density function-based atmospheric light-scattering correction to carbon dioxide retrievals from GOSAT over-sea observations[J].Remote Sensing of Environment,2012,117:301-306.
    [8] Oshchepkov S,Bril A,Yokota T.An improved photon path length probability density function-based radiative transfer model for space-based observation of greenhouse gases[J].Journal of Geophysical Research,2009,114(D19):D19207.
    [9] Bril A,Oshchepkov S,Yokota T.Correction of atmospheric scattering effects in space-based observations of carbon dioxide:model study of desert dust aerosol[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2008,109(10):1815-1827.
    [10] Oshchepkov S,Bril A,Yokota T.PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space[J].Journal of Geophysical Research,2008,113(D23):D23210.
    [11] Oshchepkov S,Bril A,Maksyutov S,et al.Detection of optical path in spectroscopic space-based observations of greenhouse gases:application to GOSAT data processing[J].Journal of Geophysical Research,2011,116(D14):D14304.
    [12] Joiner J,Guanter L,Lindstrot R,et al.Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements:methodology,simulations,and application to GOME-2[J].Atmospheric Measurement Techniques,2013,6(10):2803-2823.
    [13] Guanter L,Frankenberg C,Dudhia A,et al.Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements[J].Remote Sensing of Environment,2012,121:236-251.
    [14] Frankenberg C,O′Dell C,Guanter L,et al.Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres:implications for its retrieval and interferences with atmospheric CO2 retrievals[J].Atmospheric Measurement Techniques,2012,5(8):2081-2094.