非等分布置的特高压直流输电接地极导流系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Current guiding system design of electrode for UHVDC transmission with non-equally divided scheme
  • 作者:李文津 ; 赵爱军 ; 吴小东
  • 英文作者:LI Wenjin;ZHAO Aijun;WU Xiaodong;Central Southeast China Electric Power Design Research Institute;China Electric Power Equipment Technology Co.,Ltd.;
  • 关键词:接地极 ; “外六内三” ; 非等分布置 ; 导流电缆截面 ; 经济性对比
  • 英文关键词:electrode;;outer-6 and inner-3;;non-equally divided;;section of current guiding cable;;economic comparison
  • 中文刊名:JSDJ
  • 英文刊名:Electric Power Engineering Technology
  • 机构:中国电力工程顾问集团中南电力设计院有限公司;中国电力技术装备有限公司;
  • 出版日期:2019-05-28
  • 出版单位:电力工程技术
  • 年:2019
  • 期:v.38;No.185
  • 基金:国家电网有限公司总部科技项目(STYHT/15-JS191)
  • 语种:中文;
  • 页:JSDJ201903006
  • 页数:6
  • CN:03
  • ISSN:32-1866/TM
  • 分类号:27-32
摘要
为满足特高压直流输电(UHVDC)工程传输容量不断提升的需求,针对接地极导流系统等分布置常规方案的技术缺陷,提出适用于额定直流电流6 250 A及更高的UHVDC接地极导流系统"外六内三"的非等分布置方案。基于电力系统行业标准规定的2种N-1故障及行标未规定但实际运行中可能出线的3种N-2故障,给出接地极导流系统通流能力阈值计算方法,并据此给出"外六内三"非等分方案下接地极导流系统稳态通流及故障态校验。搭建适用于实际工程的仿真模型,详细研究其导流电缆截面选型依据,并根据文中提出方案与常规方案的经济性对比分析,给出非等分布置时高压直流输电接地极导流系统通用设计。
        For the demand of transmission of bulk power through UHVDC,based on the faultiness of the equally divided current guiding system of traditional electrode design,this paper proposes a new outer-6 and inner-3 non-equally divided scheme to optimize the current guiding system design of the electrode for the UHVDC transmission system with 6 250 A rated dc current or higher. Based on the two N-1 faults which stipulated in grid code and other three N-2 faults which occur during real operation,the threshold value of current guiding capability of current guiding system of UHVDC electrode is calculated. Besides,the current loading capacity calculation of guiding system under both normal operation and fault condition with the proposed outer-6 and inner-3 scheme is analyzed. A simulation model is established in the ETTG to discuss the selection of section of current guiding cable. Moreover,an economic comparison between the non-equally divided scheme proposed in this paper and traditional equally divided scheme is conducted. The general conclusion of the electrode current guiding system design with nonequally divided scheme is summarized in the end.
引文
[1]中国电力工程顾问集团中南电力设计院有限公司.高压直流输电设计手册[M].北京:中国电力出版社,2017.Central Southeast China Electric Power Design Research Institute. Design manual of high voltage DC transmission system[M].Beijing:China Electric Power Press,2017.
    [2]陆继明,肖冬,毛承雄,等.直流输电接地极对地表电位分布的影响[J].高电压技术,2006,32(9):55-58.LU Jiming,XIAO Dong,MAO Chengxiong,et al. Analysis of effects of DC earthed pole on earth surface potential distributions[J]. High Voltage Engineerinig,2006,32(9):55-59.
    [3]解广润.电力系统接地技术[M].北京:中国电力出版社,1996:27-25.XIE Guangrun. Power system grounding technology[M].Beijing:China Electric Power Press,1996:27-25.
    [4]陈德智,黄振华,刘杰,等.水平分层土壤中点电流源电流场的计算[J].高电压技术,2008,34(7):1379-1382.CHEN Dezhi,HUANG Zhenhua,LIU Jie,et al. Calculation of current field due to a point source in multi-layer soil[J]. High Voltage Engineerinig,2008,34(7):1379-1382.
    [5]郝治国,余洋,张保会,等.高压直流输电单极大地方式运行时地表电位分布规律[J].电力自动化设备,2009,37(6):10-14.HAO Zhiguo,YU Yang,ZHANG Baohui,et al. Earth surface potential distribution of HVDC operation under monopole ground return mode[J]. Electric Power Automation Equipment,2009,37(6):10-14.
    [6]刘连光,马成廉.基于有限元方法的直流输电接地极多层土壤地电位分布计算[J].电力系统保护与控制,2015,43(18):1-5.LIU Lianguang,MA Chenglian. Calculation of multilayer soil earth surface potential distribution of HVDC due to finite element method[J]. Power System Protection and Control,2015,43(18):1-5.
    [7]王建武,文习山,杜忠东,等.±800 k V圆环接地极电流场温度场耦合计算[J].电工技术学报,2009,24(3):14-19.WANG Jianwu,WEN Xishan,DU Zhongdong,et al. Coupling calculation of current field and temperature field of±800 k V cirque dc grounding-electrode[J]. Transactions of China Electrotechnical Society,2009,24(3):14-19.
    [8]张哲任,徐政,徐韬,等.采用有限体积法的特高压直流输电系统接地极稳态温度场仿真分析[J].高电压技术,2012,38(2):328-334.ZHANG Zheren,XU Zheng,XU Tao,et al. Steady-state temperature field simulation analysis of ultra high voltage dc transmission system grounding electrode using finite volume method[J].Transactions of China Electrotechnical Society,2012,38(2):328-334.
    [9]杜华珠,文习山,王羽,等.水平型直流接地极温升试验与仿真[J].高电压技术,2013,39(5):1184-1190.DU Huazhub,WEN Xishan,WANG Yu,et al. Test and simulation for horizontal grounding electrode's temperature rise[J]. High Voltage of Engineering,2013,39(5):1184-1190.
    [10]王羽,李晓萍,罗思敏,等.垂直型直流接地极暂态温升计算与试验[J].中国电机工程学报,2013,33(10):184-191.WANG Yu,LI Xiaoping,LUO Simin,et al. Test and computation for vertical grounding electrode's transient temperature rise[J]. Proceedings of the CSEE,2013,33(10):184-191.
    [11]魏德军.直流接地极对地下金属设施的电腐蚀影响[J].电网技术,2008,32(2):75-77.WEI Dejun. Electro-corrosion impact of DC grounding electrode on underground metallic facilities[J]. Power System Technology,2008,32(2):75-77.
    [12]迟兴和,张玉军.直流接地极与大地中金属管道的防护距离[J].电网技术,2008,32(2):71-74.CHI Xinghe,ZHANG Yujun. Protective distance between hvdc electrode and underground metal pipeline[J]. Power System Technology,2008,32(2):71-74.
    [13]刘昌,孟晓波,樊灵孟,等.直流工程接地极入地电流对埋地金属管道的影响[J].南方电网技术,2015,9(3):15-20.LIU Chang,MENG Xiaobo,FAN Lingmeng,et al. Influence of ground return current from hvdc earthing electrode on buried metal pipeline[J]. Southern Power System Technology,2015,9(3):15-20.
    [14]刘曲,郑健超,李立浧.直流输电系统变压器中性点电流分布的影响因素[J].高电压技术,2008,34(4):643-646.LIU Qu,ZHENG Jianchao,LI Licheng. Influential factors on distribution of DC currents flowing through neutrals of transformers[J]. High Voltage Technology,2008,34(4):643-646.
    [15]高压直流输电大地返回运行系统设计技术规程:DL/T5224—2014[S].北京:中国计划出版社,2014.Technical code for design of HVDC earth return system:DL/T5224—2014[S]. Beijing:China Planning Press,2014.
    [16]高压直流接地极技术导则:DL/T 5437—2012[S].北京:中国电力出版社,2012.Technical guide of HVDC earth electrode system:DL/T5437—2012[S]. Beijing:China Electric Power Press,2012.
    [17]电力工程电缆设计规范:GB 50217—2007[S].北京:中国计划出版社,2008.Code for design of cables of electric engineering:GB 50217—2007[S]. Beijing:China Planning Press,2008.
    [18]±800 k V特高压直流输电工程换流站标准化设计文件之(二):接地极本体标准化设计指导书[R].北京:国家电网公司,2015.Standard design documents of±800 k V UHVDC converter station(Ⅱ):standard guideline of earth electrode[R]. Beijing:State Grid Corporation of China,2015.