地下排管多电缆线路分流对运行寿命的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Redistribution Circuit Current in an Underground Cable Trench on Cable Service Life
  • 作者:李秋芳 ; 周承科 ; 王航 ; 田智 ; 夏湛然 ; 程萌
  • 英文作者:LI Qiufang;ZHOU Chengke;WANG Hang;TIAN Zhi;XIA Zhanran;CHENG Meng;School of Electrical Engineering and Automation, Wuhan University;Northwest Branch of China National Electric Power Dispatch and Control Center;Glasgow Caledonian University;Wuhan Power Supply Company,State Grid Hubei Electric Power Company;
  • 关键词:排管敷设 ; 电缆群 ; 温度场 ; 电缆分流 ; 优化方法 ; 寿命评估
  • 英文关键词:pipe laying;;cable group;;temperature field;;cable redistribution;;optimization method;;life assessment
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:武汉大学电气与自动化学院;国家电网公司西北电力调控分中心;英国格拉斯哥加里多尼亚大学;国网湖北省电力有限公司武汉供电公司;
  • 出版日期:2019-05-28
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.318
  • 语种:中文;
  • 页:GDYJ201905030
  • 页数:8
  • CN:05
  • ISSN:42-1239/TM
  • 分类号:239-246
摘要
地下排管中聚集电缆线路数较多,散热困难,导致运行温度高。而过高的温度会加速电缆的老化,降低电缆的寿命。为延长电缆寿命,基于有限元法计算了地下排管中电缆群运行温度场,依据电缆老化理论建立地下排管电缆群寿命评估模型,并以延长电缆群平均寿命为目标函数,电缆群中总载流量不变且排管中各电缆运行温度不超过90℃为约束条件,提出了地下排管多电缆线路分流优化方法。实际工程应用结果表明:与未分流情况相比,采用优化方法后排管中电缆群的平均寿命延长了14.9 a,夏季排管中最高温电缆的导体芯温度降低了29.7℃,优化效果显著;与现行分流方案相比,采用优化方法后排管中电缆群平均寿命延长了3.0 a,夏季排管中最高温电缆的导体芯温度降低了2.7℃,验证了该方法的有效性。利用优化方法来指导未来电缆线路运行问题,能较大程度地保留排管中电缆的原始运行负荷,降低排管中电缆的温度,延长排管中电缆的平均寿命。
        There are a large number of concentrated cable lines in the underground exhaust pipe, and it is difficult to dissipate the heat, which results in the high operation temperature of cable. Excessive temperature will accelerate the aging of the cable insulation and reduce the service life of the cable. In order to extend the average service life of cables in an underground cable trench, the temperature field in an underground trench was simulated based on the finite element method; the average service life of cables in the trench was quantitatively assessed according to cable aging theory. The temperature of the highest temperature cable in the cable group was not allowed to exceed 90 ℃, and the total current of all the circuits in the trench should remain unchanged, so that an optimization model of reallocating the current in the cable group was established to extend average service life of cables. The results of practical applications reveal that,compared with the results without redistribution at all, the average service life of the cables in the redistribution optimization program is increased by 14.9 years and the conductor core temperature of cable with the highest temperature in summer is reduced by almost 29.7 ℃; compared with the results of the current distribution program, the average service life of the cables in the redistribution optimization program is increased by 3.0 years and the conductor core temperature of cable with the highest temperature in summer is reduced by almost 2.7 ℃, which verify the effectiveness of the method.The proposed optimization method can be used to guide maintenance engineers when plans and designs are required to redistribute currents among cables in an underground trench, which can limit the operating temperature and extend average service life of cables.
引文
[1]邹宏亮,孙云莲,张弛,等.多回路电力电缆不同敷设方式对环流的影响[J].高电压技术,2016,42(8):2426-2433.ZOU Hongliang,SUN Yunlian,ZHANG Chi,et al.Effects of different muti-loop laying ways on circulating current of power cable[J].High Voltage Engineering,2016,42(8):2426-2433.
    [2]周承科,李明贞,王航,等.电力电缆资产的状态评估与运维决策综述[J].高电压技术,2016,42(8):2353-2362.ZHOU Chengke,LI Mingzhen,WANG Hang,et al.Review of condition assessment and maintenance strategy of power cable assets[J].High Voltage Engineering,2016,42(8):2353-2362.
    [3]于建立,隋琳琳,田际平,等.预埋管电缆载流量的有限容积法计算和分析[J].东北电力大学学报,2013,33(3):43-46.YU Jianli,SUI Linlin,TIAN Jiping,et al.Current capacity calculation and analysis of cables in embedded pipes based on finite volume method[J].Journal of Northeast Dianli University,2013,33(3):43-46.
    [4]凌国桢,曾庆涛,王丽萍.高温环境下不同电流载荷对电缆绝缘寿命影响的评估[J].电线电缆,2016(1):7-9.LING Guozhen,ZENG Qingtao,WANG Liping.Assessment of the influence of different current loading on cable insulation life under high temperature environment[J].Electric Wire&Cable,2016(1):7-9.
    [5]王雅群,尹毅,李旭光,等.等温松弛电流用于10 kV XLPE电缆寿命评估的方法[J].电工技术学报,2009,24(9):33-37.WANG Yaqun,YIN Yi,LI Xuguang,et al.The method of lifetime evaluation on 10 kV XLPE cables by isothermal relaxation current[J].Transactions of China Electrotechnical Society,2009,24(9):33-37.
    [6]高树国,朱永华,吴长顺,等.基于等温松弛电流法的XLPE绝缘电力电缆老化评估判据研究[J].电线电缆,2014(1):34-37.GAO Shuguo,ZHU Yonghua,WU Changshun,et al.Criterion of aging assessment for XLPE insulation power cable based on isothermal relaxation method[J].Electric Wire&Cable,2014(1):34-37.
    [7]刘刚,金尚儿,梁子鹏,等.基于等温松弛电流法和活化能法的110 k V XLPE电缆老化状态评估[J].高电压技术,2016,42(8):2372-2381.LIU Gang,JIN Shang'er,LIANG Zipeng,et al.Aging state assessment of 110 kV XLPE cable based on isothermal relaxation current method and activation energy method[J].High Voltage Engineering,2016,42(8):2372-2381.
    [8]林敏,张子阳,李淑琦,等.等温松弛电流法在XLPE电缆老化状态评估中的应用[J].电工电气,2014(9):46-49.LIN Min,ZHANG Ziyang,LI Shuqi,et al.Application of temperature relaxation current method in XLPE insulated power cable ageing state evaluation[J].Electrotechnics Electric,2014(9):46-49.
    [9]李鑫,陈晓科,彭发东,等.高频电压加速XLPE电缆绝缘水树老化研究[J].绝缘材料,2015,48(10):50-54.LI Xin,CHEN Xiaoke,PENG Fadong,et al.Study on accelerated ageing behavior of water trees in XLPE cable insulation at high frequency voltage[J].Insulation Materials,2015,48(10):50-54.
    [10]王志强,周长亮,李文文,等.船用丁基橡胶绝缘电缆剩余寿命评估[J].中国电机工程学报,2012,32(34):189-195.WANG Zhiqiang,ZHOU Changliang,LI Wenwen,et al.Residual life assessment of butyl rubber insulated cables in shipboard[J].Proceedings of the CSEE,2012,32(34):189-195.
    [11]喻岩珑,李晟,孙辉,等.XLPE电缆绝缘老化与剩余寿命评估的试验方法[J].电网与清洁能源,2011,27(4):26-29.YU Yanlong,LI Sheng,SUN Hui,et al.Test method aging of XLPEcable insulation and remaining life assessment[J].Power System and Clean Energy,2011,27(4):26-29.
    [12]TANG Z,ZHOU W,ZHAO J,et al.Comparison of the Weibull and the crow-AMSAA model in prediction of early cable joint failures[J].IEEE Transactions on Power Delivery,2015,30(6):2410-2418.
    [13]SACHAN S,ZHOU C,BEVAN G,et al.Failure prediction of power cables using failure history and operational conditions[C]//Properties and Applications of Dielectric Materials.Sydney,Australia:IEEE,2015:380-383.
    [14]于建立,牟瑞,张俊丰,等.提高地下电缆线路负荷能力的方法[J].武汉大学学报(工学版),2014,47(1):71-75.YU Jianli,MU Rui,ZHANG Junfeng,et al.Method for raising load capacity of underground cable line[J].Engineering Journal of Wuhan University,2014,47(1):71-75.
    [15]ZHENG Y L,YI T,ZHANG G J,et al.Optimization design for rating calculations of power cables in pipes[C]//International Conference on Electrical Insulating Materials.Kyoto,Japan:IEEE,2014:417-420.
    [16]李秋芳,周文俊,田智,等.电缆排管敷设方式下的分流运行优化方法[J].电测与仪表,2018,55(3):129-136.LI Qiufang,ZHOU Wenjun,TIAN Zhi,et al.Optimization method of circuit current redistribution in a trench with multiple cable conduits to limit maximum temperature[J].Electrical Measurement&Instrumentation,2018,55(3):129-136.
    [17]李秋芳.基于运行温度变化的排管电缆群寿命评估研究[D].武汉:武汉大学,2018.LI Qiufang.Study on life assessment of cable group in pipes based on the operating temperature variation[D].Wuhan,China:Wuhan University,2018.
    [18]阮羚,赵艾萱,邓丹,等.三芯电缆不平衡电流对温度分布的影响[J].高电压技术,2018,44(8):2704-2709.RUAN Ling,ZHAO Aixuan,DENG Dan,et al.Influence of unbalanced current in 3-core power cable on temperature distribution[J].High Voltage Engineering,2018,44(8):2704-2709.
    [19]MONTANARI G C,SIMONI L.Aging phenomenology and modeling[J].IEEE Transactions on Electrical Insulation,1993,47(5):755-776.
    [20]MONTANARI G C,PATTINI G,SIMONI L.Long-term behavior of XLPE insulated cable models[J].IEEE Transactions on Power Delivery,1987,2(3):596-602.
    [21]王育学,张哲,尹项根,等.平行多回电缆序阻抗参数的计算与分析[J].电网技术,2011,35(8):186-191.WANG Yuxue,ZHANG Zhe,YIN Xianggen,et al.Calcuation and analysis of sequence impedances for parallel muti-circuit cable lines[J].Power System Technology,2011,35(8):186-191.
    [22]PATIL K D,GANDHARE W Z.Effects of harmonics in distribution systems on temperature rise and life of XLPE power cables[C]//International Conference on Power and Energy Systems.Chennai,India:IEEE,2012:1-6.