旋转爆轰波中多波流动模式的数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Investigation on Multiple Wave Propagation Mode of Rotating Detonation Waves
  • 作者:杨鹏飞 ; 牟乾辉 ; 滕宏辉 ; 胡宗民 ; 姜宗林
  • 英文作者:YANG Peng-fei;MOU Qian-hui;TENG Hong-hui;HU Zong-min;JIANG Zong-lin;State Key Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences;School of Engineering Sciences,University of Chinese Academy of Sciences;Chinese Academy of Sciences;School of Aerospace Engineering,Beijing Institute of Technology;
  • 关键词:旋转爆轰波 ; 总温 ; 双波对撞 ; 双波同向
  • 英文关键词:Rotating detonation waves;;Total temperature;;Two-waves collision;;Two-waves co-propagation
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:中国科学院力学研究所高温气体动力学国家重点实验室;中国科学院大学工程科学学院;中国科学院;北京理工大学宇航学院;
  • 出版日期:2018-12-20 11:44
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.260
  • 基金:国家自然科学基金(91641130;11372333)
  • 语种:中文;
  • 页:TJJS201902020
  • 页数:9
  • CN:02
  • ISSN:11-1813/V
  • 分类号:164-172
摘要
为了研究旋转爆轰燃烧室内复杂的波系结构,特别是爆轰波多波传播模式的影响因素,采用两步诱导-放热总包反应模型,对简化的二维旋转爆轰波进行数值模拟。在不考虑环形爆轰燃烧室曲率的情况下,研究了进口总温和周向尺寸对单波及多波流场结构的影响。结果表明,一定范围内进口总温的增加会使得爆轰波的波头数目增加,且双波流场结构中存在双波对撞和双波同向两种传播形式,双波同向传播和三波同向传播之间则稳定存在着两组双波对撞流场,且有对应的温度范围;对于双波对撞模式,持续减小周向尺寸能够使得流场结构转变成单波模式;周向尺寸的增加则会使得双波对撞向双波同向传播模式转变。
        In order to research the complex wave structures of the rotating detonation combustor,especially the factors of multiple detonation waves propagation mode,the two-dimensional simplified rotating detonation waves were simulated by solving numerically the reactive Euler equations with a two-step induction-reaction overall kinetic model. Under the condition of ignoring the curvature of the annular detonation combustor,the effects of circumferential size and total temperature on the flow field structure of single and multiple rotating detonation waves(RDW)were investigated. The present numerical results show that the number of the detonation wave front increases for the increasing stagnation temperature within a certain range. For the two waves propagation process,there are two different propagation modes: two-waves collision and two-waves co-propagation. Between the two-waves co-propagation and the three-waves co-propagation,there also exists stably double two-collision propagation mode,which has a corresponding temperature range. For the collision mode,the two-waves collision mode can transform into the one-wave mode with the decrease of circumferential size and the increasing circumferential size results into the generation of the two-waves co-propagation mode.
引文
[1] Wolanski P. Detonative Propulsion[J]. Proceeding of Combustion Institute,2013,34(1):125-158.
    [2] Kailasanath K. Review of Propulsion Applications of Detonation Waves[J]. AIAA Journal,2000,38(38):1698-1708.
    [3] Voitsekhovskii B V. Stationary Spin Detonation[J]. Soviet Journal of Applied Mechanics and Technical Physics,1960,3(3):157-164.
    [4] Nicholls J,Cullen R,Ragland K. Feasibility Studies of Rotating Detonation Wave Rocket Motor[J]. Journal of Spacecraft&Rockets,1966,3(6):893-898.
    [5] Wilson D R,Lu F K. Summary of Recent Research on Detonation Wave Engines at UTA[C]. Pusan:International Workshop on Detonation for Propulsion,2011.
    [6] Bykovskii F A,Zhdan S A,Vedernikov E F. Continuous Spin Detonation of Fuel-Air Mixtures[J]. Combustion Explosion&Shock Waves,2006,42(4):463-471.
    [7] Bykovskii F A,Zhdan S A,Vedernikov E F. Continuous Spin Detonation of Hydrogen-Oxygen Mixtures. 1.Annular Cylindrical Combustors[J]. Combustion Explosion&Shock Waves,2008,44(2):150-162.
    [8] Bykovskii F A,Zhdan S A,Vedernikov E F. Continuous Spin Detonations[J]. Journal of Propulsion&Power,2006,22(6):1204-1216.
    [9] Frolov S M,Aksenov V S,Ivanov V S,et al. LargeScale Hydrogen–Air Continuous Detonation Combustor[J]. International Journal of Hydrogen Energy,2015,40(3):1616-1623.
    [10] Kindracki J,Wolański P,Gut Z. Experimental Research on the Rotating Detonation in Gaseous Fuels-Oxygen Mixtures[J]. Shock Waves,2011,21(2):75-84.
    [11] Lu F K,Braun E M. Rotating Detonation Wave Propulsion:Experimental Challenges,Modeling,and Engine Concepts[J]. Journal of Propulsion&Power,2014,30(5):1125-1142.
    [12] Adamson Jr T C,Olsson G R. Performance Analysis of Rotating Detonation Wave Rocket Engine[J]. Acta Astronautica,1967,13(4):405-415.
    [13] Zhdan S A,Bykovskii F A,Vedernikov E F. Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen-Oxygen Mixture[J]. Combustion Explosion&Shock Waves,2007,43(4):449-459.
    [14] Braun E M,Lu F K,Wilson D R,et al. Air-Breathing Rotating Detonation Wave Engine Cycle Analysis[J].Aerospace Science&Technology,2013,27(1):201-208.
    [15] Kailasanath K. The Rotating-Detonation-Wave Engine Concept:a Brief Status Report[C]. Florida:49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,2011.
    [16]刘世杰,刘卫东,林志勇,等.连续旋转爆震波传播过程研究(I):同向传播模式[J].推进技术,2014,35(1):138-144.(LIU Shi-jie,LIU Wei-dong,LIN Zhiyong,et al. Research on Continuous Rotating Detonation Wave Propagation Process(Ⅰ):One Direction Mode[J]. Journal of Propulsion Technology,2014,35(1):138-144.)
    [17]刘世杰,林志勇,刘卫东,等.连续旋转爆震波传播过程研究(II):双波对撞传播模式[J].推进技术,2014,35(2):269-275.(LIU Shi-jie,LIN Zhi-yong,LIU Wei-dong,et al. Research on Continuous Rotating Detonation Wave Propagation Process(Ⅱ):Two-Wave Collision Propagation Mode[J]. Journal of Propulsion Technology,2014,35(2):269-275.)
    [18]王超,刘卫东,刘世杰,等.高总温来流下的连续旋转爆震验证试验[J].推进技术,2016,37(3):578-584.(WANG Chao,LIU Wei-dong,LIU Shi-jie,et al. Validating Experiment of Continuous Rotating Detonation under High Total Temperature Air[J]. Journal of Propulsion Technology,2016,37(3):578-584.)
    [19] Bykovskii F A,Zhdan S A. Current Status of Research of Continuous Detonation in Fuel-Air Mixtures(Review)[J]. Combustion Explosion&Shock Waves,2015,51(1):21-35.
    [20]郑权,翁春生,白桥栋.倾斜环缝喷孔式连续旋转爆轰发动机试验[J].推进技术,2014,35(4):570-576.(ZHENG Quan,WENG Chun-sheng,BAI Qiaodong. Experiment on Continuous Rotating Detonation Engine with Tilt Slot Injector[J]. Journal of Propulsion Technology,2014,35(4):570-576.)
    [21]王迪,周进,林志勇.煤油两相连续旋转爆震燃烧室工作特性试验研究[J].推进技术,2017,38(2):471-480.(WANG Di,ZHOU Jin,LIN Zhi-yong. Experimental Investigation on Operating Characteristics of Two-Phase Continuous Rotating Detonation Combustor Fueled By Kerosene[J]. Journal of Propulsion Technology,2017,38(2):471-480.)
    [22] Shen I W,Adamson T C. Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors[J]. Astronautica Acta,1972,17(1):715-728.
    [23] Hishida M,Fujiwara T,Wolanski P. Fundamentals of Rotating Detonations[J]. Shock Waves,2009,19(1):1-10.
    [24] Zhou R,Wang J P. Numerical Investigation of Flow Particle Paths and Thermodynamic Performance of Continuously Rotating Detonation Engines[J]. Combustion and Flame,2012,159(12):3632-3645.
    [25]马虎,武晓松,王栋,等.旋转爆震发动机数值研究[J].推进技术,2012,33(5):820-825.(MA Hu,WU Xiao-song,WANG Dong,et al. Numerical Investigation for Rotating Detonation Engine[J]. Journal of Propulsion Technology,2012,33(5):820-825.)
    [26]卓长飞,武晓松,封锋,等.旋转爆轰发动机工作过程的数值模拟[J].推进技术,2014,35(12):1707-1714.(ZHUO Chang-fei, WU Xiao-song,FENG Feng,et al. Numerical Simulation of Operation Process of Rotating Detonation Engines[J]. Journal of Propulsion Technology,2014,35(12):1707-1714.)
    [27] Schwer D A,Kailasanath K. Numerical Study of the Effects of Engine Size on Rotating Detonation Engines[C].Florida:49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,2011.
    [28] Schwer D,Kailasanath K. Fluid Dynamics of Rotating Detonation Engines with Hydrogen and Hydrocarbon Fuels[J]. Proceedings of the Combustion Institute,2013,34(2):1991-1998.
    [29] Dyer R,Naples A,Kaemming T,et al. Parametric Testing of a Unique Rotating Detonation Engine Design[C]. Tennessee:50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,2012.
    [30] Naples A,Hoke J,Schauer F. Rotating Detonation Engine Interaction with an Annular Ejector[C]. Maryland:52nd Aerospace Sciences Meeting,2014.
    [31] Anand V,George A S,Driscoll R,et al. Investigation of Rotating Detonation Combustor Operation with H2-Air Mixtures[J]. International Journal of Hydrogen Energy,2016,41(2):1281-1292.
    [32] Ng H D,Radulescu M I,Higgins A J,et al. Numerical Investigation of the Instability for One-Dimensional Chapman-Jouguet Detonations with Chain-Branching Kinetics[J]. Combustion Theory and Modelling,2005,9(3):385-401.
    [33] Short M,Sharpe G J. Pulsating Instability of Detonations with a Two-Step Chain-Branching Reaction Model:Theory and Numerics[J]. Combustion Theory and Modelling,2003,7(2):401-416.
    [34] Jiang Z L. On Dispersion-Controlled Principles for NonOscillatory Shock-Capturing Schemes[J]. Acta Mechanica Sinica,2004,20(1):1-15.
    [35] Tang X M,Wang J P,Shao Y T. Three-Dimensional Numerical Investigations of the Rotating Detonation Engine with a Hollow Combustor[J]. Combustion and Flame,2014,162(4):997-1008.
    [36] Gamezo V N,Desbordes D,Oran E S. Formation and Evolution of Two-Dimensional Cellular Detonations[J].Combustion and Flame,1999,116(1-2):154-165.
    [37] George A S,Driscoll R,Anand V,et al. On the Existence and Multiplicity of Rotating Detonations[J]. Proceedings of the Combustion Institute,2016,36(2):2691-2698.