褶皱结构对蜻蜓后翅的气动特性影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aerodynamic Effects of Corrugation on Dragonfly Hindwing
  • 作者:罗云 ; 何国毅 ; 王琦 ; 宋航 ; 陈冬慧
  • 英文作者:Luo Yun;He Guoyi;Wang Qi;Song Hang;Chen Donghui;School of Aircraft Engineering, Nanchang Hangkong University;
  • 关键词:蜻蜓后翅 ; 雷诺数 ; 滑翔 ; 褶皱结构 ; 计算流体力学
  • 英文关键词:hindwing of dragonfly;;Reynolds number;;gliding flight;;corrugation;;computational fluid dynamics(CFD)
  • 中文刊名:HKGC
  • 英文刊名:Advances in Aeronautical Science and Engineering
  • 机构:南昌航空大学飞行器工程学院;
  • 出版日期:2019-05-28
  • 出版单位:航空工程进展
  • 年:2019
  • 期:v.10;No.39
  • 基金:国家自然科学基金(11462015,11862017)
  • 语种:中文;
  • 页:HKGC201903009
  • 页数:8
  • CN:03
  • ISSN:61-1479/V
  • 分类号:71-78
摘要
褶皱结构是否能对蜻蜓后翅气动性能产生正面的影响,对蜻蜓后翅气动性能的影响是否与雷诺数(Re)相关。建立接近真实蜻蜓后翅的三维蜻蜓后翅褶皱模型和拥有同样外形的三维平板模型,利用计算流体力学方法分别计算两个模型在不同Re、不同攻角(α)下滑翔飞行时的气动特性。结果表明:褶皱结构的存在会明显提高蜻蜓后翅的升力,但是同时也会增大其阻力;不同Re情况下,褶皱结构对蜻蜓后翅气动性能的影响不同,当Re=1 000,α=0°~25°时,蜻蜓后翅的气动效能始终略优于三维平板;褶皱结构对蜻蜓后翅气动特性的影响与α也相关,α较大时蜻蜓后翅的气动效能略优于三维平板。
        To study aerodynamic performance of the dragonfly wing at gliding flight at different Reynolds numbers, a three-dimensional model of the dragonfly hindwing with corrugation and a three-dimensional flat plate with the same shape of the dragonfly hindwing are established. The aerodynamic effects of corrugation at gliding motion are studied using the method of computational fluid dynamics, in the Reynolds number range of 1 000 to 10 000 and angles of attack changing from 0° to 25°(with an interval of 5°). Results show that the effect of corrugation is to increase both lift and drag to varying degrees; the aerodynamic effect of wing corrugation might be Reynolds numbers dependent. While Re=1 000, aerodynamic performance of the dragonfly hindwing is slightly better than the flat plate over the entire range of parameters tested; the effect of corrugation depends on the angle of attack, while at a higher angle of attack, aerodynamic performance of the dragonfly hindwing is slightly better than the flat plate.
引文
[1] Olberg R M,Worthington A H,Venator K R.Prey pursuit and interception in dragonflies[J].Journal of Comparative Physiology A,Sensory,Neural & Behavioral Physiology,2000,186(2):155-162.
    [2] Machida K,Shimanuki J.Structure analysis of the wing of a dragonfly[C]//International Conference on Experimental Mechanics and Third Conference of the Asian Committee on Experimental Mechanics.USA:International Society for Optics and Photonics,2005:174-175.
    [3] Kesel A B.Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils[J].Journal of Experimental Biology,2000,203(20):3125-3135.
    [4] 李秀娟.蜻蜓翅膀功能特性力学机制的仿生研究[D].长春:吉林大学,2013.Li Xiujuan.Bionic investigation on mechanical mechanism of dragonfly wings functional characteristics[D].Changchun:Jilin University,2013.(in Chinese)
    [5] Needham J G.Genealogic study of dragonfly wing venation[J].Proceedings of the United States National Museum,1903,26(1331):703-764.
    [6] Okamoto M,Yasuda K,Azuma A.Aerodynamic characteristics of the wings and body of a dragonfly[J].Journal of Experimental Biology,1996,199(2):281-294.
    [7] Combes S A,Daniel T L.Flexural stiffness in insect wings.Ⅰ.Scaling and the influence of wing venation[J].Journal of Experimental Biology,2003,206(17):2979-2987.
    [8] Combes S A,Daniel T L,Combes S A,et al.Flexural stiffness in insect wings.Ⅱ.Spatial distribution and dyna-mic wing bending[J].Journal of Experimental Biology,2003,206(17):2989-2997.
    [9] Buckholz R H.The functional role of wing corrugations in living systems[J].Journal of Fluids Engineering,1986,108(1):93-97.
    [10] Vargas A,Mittal R,Dong H.A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight[J].Bioinspiration & Biomimetics,2008,3(2):13-20.
    [11] Rees C J C.Form and function in corrugated insect wings[J].Nature,1975,256(5514):200-203.
    [12] Newman B G.Model test on a wing section of a dragonfly[J].Scale Effects in Animal Locomotion,1977(3):445-477.
    [13] Rudolph R.Aerodynamical properties of Libellula quadrimaculata L.(Anisoptera:Libellulidae) and the flow around smooth and corrugated wing section models during gliding flight[J].Odonatologica,1989,7:49-58.
    [14] Meng X G,Sun M.Aerodynamic effects of wing corrugation at gliding flight at low Reynolds numbers[J].Physics of Fluids,2013,25(7):200.
    [15] 刘惠祥,何国毅,罗云.蜻蜓滑翔时前翅褶皱的流固耦合分析[J].科学技术与工程,2018(8):144-150.Liu Huixiang,He Guoyi,Luo Yun.Fluid-structure inte-raction simulation of dragonfly’s forewing in gliding flight[J].Science Technology and Engineering,2018(8):144-150.(in Chinese)