矩形钢管高强混凝土框架抗震性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seismic Behavior of Rectangular High-Strength Concrete-Filled Steel Tube Frame Structure
  • 作者:管民生 ; 黄献奇 ; 杜宏彪 ; 张金刚
  • 英文作者:GUAN Minsheng;HUANG Xianqi;DU Hongbiao;ZHANG Jingang;College of Civil Engineering,Shenzhen University;
  • 关键词:矩形钢管高强混凝土 ; 框架结构 ; 抗震性能 ; 低周反复荷载试验 ; 有限元分析
  • 英文关键词:rectangular high strength concrete-filled steel tube;;frame structure;;seismic behavior;;cyclic loading test;;finite element analysis
  • 中文刊名:XNJT
  • 英文刊名:Journal of Southwest Jiaotong University
  • 机构:深圳大学土木工程学院;
  • 出版日期:2019-02-22 17:26
  • 出版单位:西南交通大学学报
  • 年:2019
  • 期:v.54;No.247
  • 基金:深圳市科技研发资金资助项目(JCYJ20170818142117164,JCYJ20160331114415945);; 深圳大学青年教师启动项目资助(2017062)
  • 语种:中文;
  • 页:XNJT201903006
  • 页数:9
  • CN:03
  • ISSN:51-1277/U
  • 分类号:43-51
摘要
为研究地震作用下矩形钢管高强混凝土框架的破坏机理和抗震性能,进行了单跨两层矩形钢管高强混凝土框架低周反复荷载试验和有限元分析.考察结构试件在试验过程中塑性铰出现的位置、顺序及塑性发展程度,研究其破坏机制和破坏模式.研究结构滞回曲线与骨架曲线,分析其承载能力、变形能力、耗能能力以及强度和刚度退化情况.在此基础上,采用有限元软件Perform-3D对矩形钢管高强混凝土框架试件进行参数分析,研究了轴压比、钢材屈服强度及静力弹塑性分析水平侧向力加载模式等对结构抗震性能影响.结果表明:矩形钢管高强混凝土框架试件呈梁铰破坏形态,并具有承载能力高、变形能力和耗能能力强的特点.试件平均峰值荷载较屈服荷载提高了1.68倍;顶层和底层最大层间位移角分别为1/30和1/27,分别超过了规范规定限值的66.7%和85.2%.延性系数分别超出了规定限值的58.5%和60.0%;轴压比对结构抗震性能影响显著.当轴压比大于0.6时,结构承载能力与变形能力明显降低;水平侧向力加载模式对结构承载能力影响大.均匀加载模式下结构承载能力最大,顶点加载模式下最小,倒三角形加载模式居于二者之间.研究成果可为矩形钢管高强混凝土框架结构抗震设计提供参考.
        In order to study the failure mechanism and seismic performance of rectangular high-strength concretefilled steel tube(RHCFT) frames,the cyclic loading test as well as the finite element(FE) analysis was conducted on a single-span and two-story RHCFT frame. During the test, the formation process of plastic hinge in the specimen including the location,sequence and degree of plastic development of the plastic hinge was investigated to study the failure mechanism,and thus the failure mode of the specimen. According to the hysteretic curves and backbone curves from the experiment, the seismic performance of the RHCFT frame, including the bearing capacity, the deformation ability, the energy dissipation capacity as well as the strength and stiffness degradation,was examined. On this basis,the FE analysis model of the RHCFT frame specimen was created using Perform-3 D. The effects of the axial compression ratio,the steel yield strength,and the lateral load pattern on the seismic performance of the structure were examined. The results show the RHCFT frame demonstrates a strong column and weak beam failure mode,and has the characteristics of high bearing capacity,deformation capacity,and energy dissipation capacity. The average peak load of the specimen is 1.68 times higher than the yield load. The maximum inter-story drift ratios of the top and bottom stories are 1/30 and 1/27,respectively,which exceed 66.7% and 85.2% of the limit specified in the specification. The ductility coefficients exceed the prescribed limit by 58.5% and 60.0% respectively. The axial compression ratio has a significant effect on the seismic performance of the structure. When the axial pressure ratio is greater than 0.6,the bearing capacity and deformation capacity of the structure decrease drastically. The lateral load pattern have a great influence on the bearing capacity of the structure. The load capacity of the structure is the largest under uniform loading pattern,the smallest under vertex loading mode,and the inverted triangle loading pattern is between them. The research results can provide reference for the seismic design of rectangular high-strength concrete-filled steel tubular frame structures.
引文
[1]韩林海.钢管混凝土结构--理论与实践[M].北京:科学出版社,2004:1-5.
    [2]于晓野,王冬冬,鄢长,等.海控国际广场大截面矩形钢管混凝土柱施工技术[J].施工技术,2011,40(24):13-16.YU Xiaoye,WANG Dongdong,YAN Chang,et al.Construction technology of rectangular steel tube concrete column with large cross-section in HNAinternational mansion[J].Construction Technology,2011,40(24):13-16.
    [3]于敬海,赵腾,陈志华,等.矩形钢管混凝土组合柱框架-支撑结构体系住宅设计[J].建筑结构,2015,45(16):47-51.YU Jinghai,ZHAO Teng,CHEN Zhihua,et al.Residential building design of concrete-filled rectangular steel tubular composite column framebracing structural system[J].Building Structure,2015,45(16):47-51.
    [4]张金刚.矩形高强钢管混凝土框架结构抗震性能研究[D].深圳:深圳大学,2016.
    [5]吴兵,傅学怡,孟美莉,等.沈阳宝能金融中心超大截面矩形钢管混凝土柱结构设计[J].建筑结构,2017,47(5):15-20,25.WU Bing,FU Xueyi,MENG Meili,et al.Structural design on super-large concrete-filled rectangular steel tube columns of Shenyang Baoneng Financial Hub[J].Building Structure,2017,47(5):15-20,25.
    [6]LEE H J,CHOI I R,PARK H G.Eccentric compression strength of rectangular concrete-filled tubular columns using high-strength steel thin plates[J].Journal of Structural Engineering-ASCE,2017,143(5):04016228.
    [7]李志强,陈以一,王伟.矩形钢管混凝土中短柱弯-剪性能试验研究[J].建筑结构学报,2015,36(7):1-9.LI Zhiqiang,CHEN Yiyi,WANG Wei.Experimental research on bending and shearing behavior of middle and short concrete filled steel tubular columns[J].Journal of Building Structures,2015,36(7):1-9.
    [8]PATEL V I,LIANG Qingquan,HADI M N S.Nonlinear analysis of biaxially loaded rectangular concrete-filled stainless steel tubular slender beamcolumns[J].Engineering Structures,2017,140:120-133.
    [9]丁永君,尚奎杰,万方贵,等.矩形钢管混凝土柱-H型钢梁节点抗震性能试验研究及有限元分析[J].建筑结构学报,2012,33(2):93-99.DING Yongjun,SHANG Kuijie,WAN Fanggui,et al.Experimental research and nonlinear FEA on seismic behavior of square concrete-filled tubular column to H-shape steel beam connection[J].Journal of Building Structures,2012,33(2):93-99.
    [10]周鹏,薛建阳,陈茜,等.矩形钢管混凝土异形柱-钢梁框架节点抗震性能试验研究[J].建筑结构学报,2012,33(8):41-50.ZHOU Peng,XUE Jianyang,CHEN Qian,et al.Experimental study on seismic performance of joints between concrete-filled square steel tubular specialshaped columns and steel beams[J].Journal of Building Structures,2012,33(8):41-50.
    [11]邵永波,王文杰,陈英.环口板加固T型方钢管节点滞回性能的试验研究[J].西南交通大学学报,2013,48(1):75-80.SHAO Yongbo,WANG Wenjie,CHEN Ying.Experimental study on hysteretic behavior of square tubular T-joints reinforced with collar plate[J].Journal of Southwest Jiaotong University,2013,48(1):75-80.
    [12]李斌,张敬磊,刘霞.矩形钢管混凝土平面框架结构抗震性能的试验研究[J].内蒙古科技大学学报,2012,31(1):85-89.LI Bin,ZHANG Jinglei,LIU Xia.Experimentalresearch on seismic behavior of concrete-filled rectangular steel tubular planar frames[J].Journal of Inner Mongolia University of Science and Technology,2012,31(1):85-89.
    [13]孙修礼.RC梁-钢管混凝土柱单跨框架抗震性能试验研究[J].建筑结构学报,2009,30(1):142-146,156.SUN Xiuli.Experimental research on seismic behavior of single span concrete-filled steel tubular frame with reinforced concrete beams[J].Journal of Building Structures,2009,30(1):142-146,156.
    [14]ZHOU Ting,JIA Yumeng,XU Minyang,et al.Experimental study on the seismic performance of L-shaped column composed of concrete-filled steel tubes frame structures[J].Journal of Constructional Steel Research,2015,114:77-88.
    [15]闻洋,孟春才,郭红玲.基于性能的三层全钢管混凝土框架试验研究[J].西南交通大学学报,2017,52(1):45-53.WEN Yang,MENG Chuncai,GUO Hongling.Performance-based experiment research on three-story concrete-filled steel tubular frame[J].Journal of Southwest Jiaotong University,2017,52(1):45-53.
    [16]建筑标准设计研究院.高层建筑钢-混凝土混合结构设计规程:CECS230-2008[S].北京:中国计划出版社,2008.
    [17]同济大学,浙江杭萧钢构股份有限公司.矩形钢管混凝土结构技术规程:CECS159-2004[S].北京:中国计划出版社,2004.
    [18]中国建筑科学研究院.建筑抗震试验方法规程:JGJ101-96[S].北京:中国建筑工业出版社,2008.
    [19]中国建筑科学研究院.建筑抗震设计规范:GB50011-2010[S].北京:中国建筑工业出版社,2010.
    [20]王军.考虑高振型影响的静力弹塑性分析方法侧向力加载模式研究[D].深圳:深圳大学,2016.