基于超临界流体强化溶液快速分散技术的冬凌草甲素脂质体口服制剂制备工艺研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation Technology Study on Oridonin A Oral Liposomes Based on Supercritical Fluid Solution-enhanced Dispersion
  • 作者:吴宏华 ; 吴媛 ; 张绘芳
  • 英文作者:WU Honghua;WU Yuan;ZHANG Huifang;Dept.of Pharmacy,Quzhou People's Hospital;Dept.of Pharmacy,the Affiliated Ninth People's Hospital of Shanghai Jiaotong University School of Medicine;
  • 关键词:冬凌草甲素 ; 脂质体 ; 口服制剂 ; 超临界流体强化溶液快速分散技术 ; 粒径 ; 包封率 ; 载药量 ; 稳定性 ; 溶出度
  • 英文关键词:Oridonin A;;Liposomes;;Oral preparation;;Supercritical fluid solution-enhanced dispersion;;Particle size;;Encapsulation efficiency;;Drug-loading amount;;Stability;;Dissolution
  • 中文刊名:ZGYA
  • 英文刊名:China Pharmacy
  • 机构:衢州市人民医院药学部;上海交通大学医学院附属第九人民医院药剂科;
  • 出版日期:2019-05-29
  • 出版单位:中国药房
  • 年:2019
  • 期:v.30;No.652
  • 基金:上海市科学技术委员会科研计划项目(No.1814090-3502);; 上海交通大学“医工交叉研究基金”项目(No.YG2016QN08)
  • 语种:中文;
  • 页:ZGYA201910014
  • 页数:5
  • CN:10
  • ISSN:50-1055/R
  • 分类号:70-74
摘要
目的:优化超临界流体强化溶液快速分散技术(SEDS)制备冬凌草甲素脂质体口服制剂(ORI-LIP)的工艺,并探讨其与常规脂质体制备技术的优势。方法:以粒径为评价指标,采用正交试验考察压力、温度、进样流速对SEDS制备ORI-LIP的影响。同时,采用薄膜分散法和逆向蒸发法制备ORI脂质体,比较3种方法所制脂质体的粒径、包封率、载药量及稳定性(6个月加速试验),并比较ORI原料药与3种脂质体的体外溶出行为的差异。结果:优化后的ORI-LIP SEDS制备工艺条件为温度50℃,压力18MPa,进样流速1 m L/min;与薄膜分散法和逆向蒸发法比较,以SEDS技术制备的脂质体的粒径[(147.4±4.8)nm]更小,包封率(67.8%)、载药量(7.8%)及稳定性(粒径略有增加,包封率仅降低4.4%)都更高。体外溶出试验结果显示,与原料药比较,各脂质体的释药速率缓慢且持久,且累积释放度更高;其中,SEDS技术制备的ORI-LIP在24 h时达到溶出平衡,且累积溶出度最高,达到67.2%。结论:SEDS制备的ORI-LIP粒径小,包封率、载药量较高,稳定性较好,能显著提高药物的体外溶出度;该技术与常规脂质体制备技术相比有一定的优势。
        OBJECTIVE: To optimize the preparation technology of Oridonin A oral liposomes(ORI-LIP) by using supercritical fluidsolution-enhanced dispersion(SEDS) technology, and to investigate its advantage with routine liposome preparation technologies. METHODS:Using particle size as evaluation index,orthogonal design was employed to investigate the influence of pressure,temperature and flow rate on the preparation technology of ORI-LIP by SEDS. At the same time,thin film dispersion and reverse evaporation method were used to prepare ORI liposomes. The particle size,encapsulation efficiency,drug loading amount and stability(accelerated test for 6 months) were compared among 3 methods. Moreover,the difference in dissolution behavior in vitro of ORI crude drug and 3 kinds of liposomes was evaluated. RESULTS:The optimized preparation condition of ORI liposomes by SEDS included temperature of 50 ℃,pressure of 18 MPa,flow rate of 1 mL/min. Compared with thin film dispersion and reverse evaporation method,the liposomes prepared by the SEDS method exhibited smaller particle size[(147.4 ± 4.8)nm],better encapsulation efficiency(67.8%),drug-loading amount(7.8%) and stability(particle size increased slightly,encapsulation efficiency decreased only by 4.4%). Results of in vitro dissolution test showed that compared with crude drug,release rate of each liposome was slow and persistent,and the cumulative release rate was higher. The accumulative release rate of ORI-LIP prepared by SEDS could achieve to 67.2%,and reached to dissolution equilibrium at 24 h. CONCLUSIONS:ORILIP prepared by SEDS has smaller particle size,higher encapsulation efficiency,drug loading amount and stability,which can improve the in vitro release of ORI. Compared with conventional methods,SEDS technology has certain advantages.
引文
[1]冯耀荣,陈红淑.冬凌草甲素抗肿瘤活性研究进展[J].中国中医药科技,2016,23(1):125-126.
    [2]YE D,DING C,YE N,et al.Discovery and development of natural product oridonin-inspired anticancer agents[J]Cheminform,2016,122(43):102-117.
    [3]MING M,SUN FY,ZHANG WT,et al.Therapeutic effect of oridonin on mice with prostate cancer[J].Asian Pac J Trop Med,2016,9(2):184-187.
    [4]LI S,LIU Y,LIU T,et al.Development and in-vivo assessment of the bioavailability of oridonin solid dispersions by the gas anti-solvent technique[J].Int J Pharm,2011,411(1/2):172-177.
    [5]ZHANG P,LIU Y,FENG N,et al.Preparation and evaluation of self-microemulsifying drug delivery system of oridonin[J].Int J Pharmaceut,2008,355(1):269-276.
    [6]WANG C,LI W,HU B.The anti-tumor effect of folate-targeted liposome microbubbles loaded with oridonin as ultrasound-triggered tumor-targeted therapeutic carrier system[J].J Drug Target,2016,25(1):83-91.
    [7]DING Y,CUI W,SUN D,et al.In vivo study of doxorubicin-loaded cell-penetrating peptide-modified p H-sensitive liposomes:biocompatibility,bio-distribution,and pharmacodynamics in BALB/c nude mice bearing human breast tumors[J].Drug Des Dev Ther,2017.DOI:10.2147/DDDT.S149814.
    [8]ZHANG H.Thin-film hydration followed by extrusion method for liposome preparation[J].Methods Mol Biol,2017,1522:17-22.
    [9]TAKEUCHI I,KISHI N,SHIOKAWA K,et al.Polyborane encapsulated liposomes prepared using pH gradient and reverse-phase evaporation for boron neutron capture therapy:biodistribution in tumor-bearing mice[J].Colloid Polym Sci,2018,296(7):1137-1144.
    [10]沈贝莉莎,安莲英,邱能,等.厚朴酚脂质体的制备与表征[J].时珍国医国药,2016,27(7):1647-1650.
    [11]金亚香,沈玉杰,赵毅,等.黄芩苷前体脂质体的制备及其在大鼠体内的药动学研究[J].中国药房,2016,27(16):2213-2217.
    [12]李淞明,刘涛,赵玲,等.超临界流体沉淀技术及其在药物制剂中的应用[J].中国医院药学杂志,2009,29(18):1567-1569.
    [13]杨刚,冯年平,邵群.应用超临界流体沉淀技术制备难溶性药物制剂的研究进展[J].中国药学杂志,2016,51(7):526-532.
    [14]洪海龙,韩利民,竺宁,等.超临界流体强制分散溶液技术及其在药物领域的应用[J].现代化工,2011,31(11):17-21.
    [15]刘晓谦,王锦玉,仝燕,等.脂质体制备技术及其研究进展[J].中国药学杂志,2011,46(14):1084-1088.
    [16]国家药典委员会.中华人民共和国药典:四部[S].2015年版.北京:中国医药科技出版社,2015:374-377.
    [17]KAGA K,HONDA M,ADACHI T,et al.Nanoparticle formation of PVP/astaxanthin inclusion complex by solution-enhanced dispersion by supercritical fluids(SEDS):effect of PVP and astaxanthin,Z-isomer content[J].J Supercrit Fluid,2018.DOI:10.1016/j.supflu.2018.02.008.
    [18]顾一珠,周文,翟光喜.葛根素脂质体的研制及其大鼠口服吸收[J].中药材,2007,30(8):970-973.
    [19]王勤,顾王文.应用纳米技术增加难溶性药物吸收的研究进展[J].药学服务与研究,2009,9(1):48-51.
    [20]BYRAPPA K,OHARA S,ADSCHIRI T.Nanoparticles synthesis using supercritical fluid technology:towards biomedical applications[J].Adv Drug Deliver Rev,2008,60(3):299-327.
    [21]FURLAN M,KLUGE J,MAZZOTTI M,et al.Preparation of biocompatible magnetite-PLGA composite nanoparticles using supercritical fluid extraction of emulsions[J].J Supercrit Fluid,2010,54(3):348-356.
    [22]SU SC,LO WS,LIEN LH.Micronization of fluticasone propionate using supercritical antisolvent process[J].Chem Eng Technol,2011,34(4):535-541.
    [23]CARENO S,BOUTIN O,BADENS F.Drug recrystallization using supercritical anti-solvent(SAS)process with impinging jets:effect of process parameters[J].Cryst Growth,2012,342(1):34-41.
    [24]CAO Z,SUN L,CAO L,et al.Production of ursolic acid nanoparticles by supercritical antisolvent precipitation[J]Adv Mater Res,2011.DOI:10.4028/www.scientific.net/AMR.233-235.2210.
    [25]BADENS E,BOUTIN O,CHARBIT L,et al.Jet dispersion and jet atomization in pressurized carbon dioxide[J]J Supercrit Fluid,2005,36(1):81-90.
    [26]RANTAKYLA M,JATTI M,AALTONEN O,et al.The effect of initial drop size on particle size in the supercritical antisolvent precipitation(SAS)technique[J].J Supercrit Fluid,2002,24(3):251-263.
    [27]HOLZSCHUH S,KAE?K,BOSSA GV,et al.Investigations of the influence of liposome composition on vesicle stability and drug transfer in human plasma:a transfer study[J].J Liposome Res,2016,28(1):1-13.
    [28]NAIK S,PATEL D,SURTI N,et al.Preparation of PE-Gylated liposomes of docetaxel using supercritical fluid technology[J].J Supercrit Fluid,2010,54(1):110-119.
    [29]FUJII S,MATSUURA T,SUNAMI T,et al.Liposome display for in vitro selection and evolution of membrane proteins[J].Nat Protoc,2014,9(7):1578-1591.
    [30]HAERI A,SADEGHIAN S,RABBANI S,et al.Use of remote film loading methodology to entrap sirolimus into liposomes:preparation,characterization and in vivo efficacy for treatment of restenosis[J].Int J Pharm,2011,414(1/2):16-27.
    [31]IGARASHI T,SHOJI Y,KATAYAMA K.Anomalous solubilization behavior of dimyristoylphosphatidylcholine liposomes induced by sodium dodecyl sulfate micelles[J]Anal Sci,2012,28(4):345-350.