Cu掺杂类沸石咪唑骨架(ZIF-8)纳米晶的机械化学法制备及其催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanochemical Synthesis and Catalytic Performance of Copper Doped Zeolitic Imidazolate Frameworks(ZIF-8) Nanocrystals
  • 作者:邢鹏 ; 杨洋 ; 崔晓琴 ; 代燕 ; 张献明
  • 英文作者:XING Peng;YANG Yang;CUI Xiaoqin;DAI Yan;ZHANG Xianming;Institute of Molecular Science,Shanxi University;Institute of Crystal Materials, Shanxi University;
  • 关键词:Cu掺杂 ; ZIF-8纳米晶 ; 液体辅助 ; 机械研磨法 ; 脱氢偶联反应 ; 硅氧烷
  • 英文关键词:Cu doping;;ZIF-8 nanocrystals;;liquid-assisted;;mechanical grinding;;dehydrogenation coupling;;siloxanes
  • 中文刊名:TYGY
  • 英文刊名:Journal of Taiyuan University of Technology
  • 机构:山西大学分子科学研究所;山西大学晶态材料研究所;
  • 出版日期:2019-06-17 16:06
  • 出版单位:太原理工大学学报
  • 年:2019
  • 期:v.50;No.224
  • 基金:国家自然科学基金资助项目(21601114,20871167);; 山西省应用基础研究计划项目(201601D021031);; 山西“1331”项目重点创新研究团队(1331KIRT)基金资助项目;; 固体表面物理化学国家重点实验室(厦门大学)开放项目(201614)
  • 语种:中文;
  • 页:TYGY201904002
  • 页数:7
  • CN:04
  • ISSN:14-1220/N
  • 分类号:5-11
摘要
采用液体辅助的机械研磨法成功将Cu离子掺杂到ZIF-8结构中,并且从液体的作用、金属前驱体的选择、金属与配体的比例对合成的影响等三方面系统优化了合成策略。以二甲基苯基硅烷与正丁醇为模型底物,对Cu掺杂ZIF-8纳米晶催化硅烷与醇脱氢偶联制备硅氧烷的反应进行了研究。结果表明,该催化剂有较好的反应活性、选择性及稳定性。该研究工作的合成策略可为多元金属ZIF材料的制备及性能研究提供借鉴。
        Recently, metal-doped zeolitic imidazolate frameworks(ZIF) has got much attention for their structure tailorability and potential catalytic application. In this work, Cu-doped ZIF-8 nanocrystals were prepared by liquid-assisted mechanical grinding method. And the influence of solvent, metal precursors and molar ratio of metal to ligand on the synthesis was studied. Further work on the catalytic performence of Cu-doped ZIF-8 nanocrystals indicates that they had high activity, selectivity and stability for the dehydrogenation coupling reaction of dimethylphenylsilane with n-butanol. We believe that the synthesis strategy reported here will open an avenue for the synthesis of multi-metal ZIF materials.
引文
[1] PARK K S,NI Z,C?Té A P,et al.Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J].Proceedings of the National Academy of Sciences,2006,103(27):10186-10191.
    [2] PHAN A,DOONAN C J,URIBE-ROMO F J,et al.Synthesis,structure,and carbon dioxide capture properties of zeolitic imidazolate frameworks[J].Accounts of Chemical Reseach,2010,43(1):58-67.
    [3] CHIZALLET C,LAZARE S,BAZER-BACHI D,et al.Catalysis of transesterification by a nonfunctionalized metal organic framework:acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations[J].Journal of the American Chemical Society,2010,132(35):12365-12377.
    [4] MIRALDA C M,MACIAS E E,ZHU M,et al.Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate[J].ACS Catalysis,2011,2(1):180-183.
    [5] YANG Q,XU Q,YU S H,et al.Back cover:Pd nanocubes@ ZIF-8:integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis[J].Angewandte Chemie International Edition,2016,55(11):3830-3830.
    [6] LI R,REN X,MA H,et al.Nickel-substituted zeolitic imidazolate frameworks for time-resolved alcohol sensing and photocatalysis under visible light[J].Journal of Materials Chemistry A,2014,2(16):5724-5729.
    [7] SCHEJN A,ABOULAICH A,BALAN L,et al.Cu2+-doped zeolitic imidazolate frameworks(ZIF-8):efficient and stable catalysts for cycloadditions and condensation reactions[J].Catalysis Science & Technology,2015,5(3):1829-1839.
    [8] ZHOU K,MOUSAVI B,LUO Z,et al.Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs.ZIF-8 and ZIF-67[J].Journal of Materials Chemistry A,2017,5(3):952-957.
    [9] XU W,CHEN H,JIE K,et al.Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks[J].Angewandte Chemie International Edition,2019,58:5018-5022.
    [10] LI R,REN X,FENG X,et al.A highly stable metal-and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation[J].Chemical Communications,2014,50(52):6894-6897.
    [11] YIN P,YAO T,WU Y,et al.Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J].Angewandte Chemie International Edition,2016,55(36):10800-10805.
    [12] BELDON P J,FáBIáN L,STEIN R S,et al.Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry[J].Angewandte Chemie International Edition,2010,49(50):9640-9643.
    [13] LEE Y R,JANG M S,CHO H Y,et al.ZIF-8:A comparison of synthesis methods[J].Chemical Engineering Journal,2015,271:276-280.
    [14] WANG W,WANG S,MA X,et al.Recent advances in catalytic hydrogenation of carbon dioxide[J].Chemical Society Reviews,2011,40(7):3703-3727.
    [15] BELETSKAYA I P,CHEPRAKOV A V.Copper in cross-coupling reactions:the post-Ullmann chemistry[J].Coordination Chemistry Reviews,2004,248(21/24):2337-2364.
    [16] BARUAH J B.Catalysts for silane and silanol activation[M].Lodon:Oxford University Press,2007,964:69-81.
    [17] MELDAL M,TORN?E C W.Cu-catalyzed azide-alkyne cycloaddition[J].Chemical Reviews,2008,108(8):2952-3015.
    [18] BLANDEZ J F,PRIMO A,ASIRI A M,et al.Copper nanoparticles supported on doped graphenes as catalyst for the dehydrogenative coupling of silanes and alcohols[J].Angewandte Chemie International Edition,2014,126(46):12789-12794.
    [19] DHAKSHINAMOORTHY A,CONCEPCION P,GARCIA H,et al.Dehydrogenative coupling of silanes with alcohols catalyzed by Cu3(BTC)2[J].Chemical Communications,2016,52(13):2725-2728.
    [20] LIN K S,ADHIKARI A K,KU C N,et al.Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage[J].International Journal of Hydrogen Energy,2012,37(18):13865-13871.
    [21] PRIMO A,ESTEVE-ADELL I,BLANDEZ J F,et al.High catalytic activity of oriented 2.0.0 copper (I) oxide grown on graphene film[J].Nature Communications,2015,6:8561-8571.