利用InSAR资料反演宁洱M_S6.4地震震源参数及库仑应力变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Earthquake Source Parameter of the Ning’er M_S6.4 Earthquake Inferred from InSAR Data and Analysis of Coulomb Stress Disturbance
  • 作者:陈晨月 ; 冯光财 ; 高华 ; 杨怀宁
  • 英文作者:CHEN Chenyue;FENG Guangcai;GAO Hua;YANG Huaining;School of Geoscience and Info-Physics Engineering, Central South University;Guangzhou Urban Planning & Design Survey Research Institute;Faculty of Geomatics, East China University of Technology;National Earthquake Response Support Service;
  • 关键词:宁洱地震 ; 震源参数 ; InSAR ; 库仑应力
  • 英文关键词:Ning'er earthquake;;earthquake source parameter;;InSAR;;Coulomb stress
  • 中文刊名:DKXB
  • 英文刊名:Journal of Geodesy and Geodynamics
  • 机构:中南大学地球科学与信息物理学院;广州市城市规划勘测设计研究院;东华理工大学测绘工程学院;中国地震应急搜救中心;
  • 出版日期:2019-03-15
  • 出版单位:大地测量与地球动力学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(41574005);; 中南大学升华育英计划;; 高分辨率对地观测系统重大专项(民用部分)(03-Y20A11-9001-15/16);; 中央高校基本科研业务费专项基金(2017zzts773)~~
  • 语种:中文;
  • 页:DKXB201903017
  • 页数:7
  • CN:03
  • ISSN:42-1655/P
  • 分类号:79-85
摘要
首先利用ALOS PALSAR数据,通过D-InSAR技术获取2007-06-03云南宁洱M_S6.4地震的同震形变场,然后基于Okada弹性半空间位错模型反演该地震的断层几何以及精细滑动分布,最后计算宁洱地震后周边断层的静态库仑应力变化。结果表明,形变主要集中在西盘,最大视线向形变量为51.6 cm;反演得到的震源位置为23.05°N、101.02°E,深度3 km,断层走向145°,倾向49.5°,平均滑动角153°,发震断层为NNW向普洱断裂,断层活动以右旋走滑为主,兼具逆冲分量;断层面最大滑动量为1.2 m,反演得到的震级为M_W6.19。基于库仑应力场发现,磨黑断裂处于库仑应力增加区域,而2014年景谷地震位于负值区域。结合实地考察资料和反演结果表明,宁洱地震为浅源地震,但断层并未出露地表。
        A M_S6.4 earthquake struck Ning'er county of Pu'er city in Yunnan, China on June 3, 2007. In this paper, we extract the coseismic deformation field by two-pass differential interferometric SAR(D-InSAR) technology from ALOS PALSAR data. Based on the Okada half-space elastic model, the fault geometry of such earthquake and the corresponding fault slip distribution parameters are then calculated, as well as the changes of Coulomb stress around the fault after the earthquake. The results show that the maximum deformation occurred in the west wall of the fault, with a 51.6 cm deformation in the line-of-sight direction. And the epicenter of the inversion is located in 23.05°N, 101.02°E, of which the focal depth is 3 km, the strike is 145°, the dip is 49.5° and the rake is 153°. We infer that the NNW direction of Pu'er fault is a causative fault, where the main motion characteristics are right-lateral strike-slip, with thrusting component, of which the maximum value of slippage is 1.2 m, and the inversion magnitude is M_W6.19. According to the Coulomb stress field, we find that the Mohei fault is located in the area of increasing Coulomb stress, while Jinggu earthquake is located in the area of negative Coulomb stress. In addition, considering both the field investigation data and experimental results, as a shallow earthquake, there is no rupture zone on the surface of Ning'er earthquake.
引文
[1] 苗崇刚,胡永龙,周光全,等. 云南宁洱6.47级地震应急行动及灾害特征[J]. 国际地震动态, 2007(6):5-11(Miao Chonggang, Hu Yonglong, Zhou Guangquan, et al. The Emergency Action and Disaster Characters of Ninger Ms6.4 Earthquake in Yunnan[J].Recent Development in World Seismology, 2007(6): 5-11)
    [2] 沙海军, 刘耀炜, 陈连旺,等. 川滇地区强震前兆异常动态过程与预测研究[M]. 北京:地震出版社,2010(Sha Haijun, Liu Yaowei, Chen Lianwang, et al. The Study on Dynamic Process and Prediction of Precursory Anomalies in Strong Earthquakes in Sichuan and Yunnan Area[M]. Beijing: Seismology Press,2010)
    [3] 徐锡伟, 闻学泽, 郑荣章, 等. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学D辑: 地球科学, 2003, 33(增1): 151-162(Xu Xiwei, Wen Xueze, Zheng Rongzhang, et al. Pattern of Latest Tectonic Motion and Its Dynamic for Active Blocks in Sichuan-Yunnan Region[J].Science in China Series D:Earth Sciences,2003,33(S1):151-162)
    [4] 谢虹, 雷中生, 袁道阳, 等. 1884年云南宁洱6.75地震补充考证与发震构造讨论[J]. 地震工程学报, 2014, 36(3): 663-673(Xie Hong, Lei Zhongsheng, Yuan Daoyang, et al. Supplement Textual Research on Historical Data of the 1884 Ninger Earthquake in Yunnan Province and Discussion on Its Seismogenic Structure[J]. China Earthquake Engineering Journal, 2014, 36(3): 663-673)
    [5] 钱晓东, 李琼, 秦嘉政. 2007年宁洱6.4级地震序列视应力研究[J]. 地震研究, 2007, 30(4): 311-317(Qian Xiaodong, Li Qiong, Qin Jiazheng. Apparent Stress of the 2007 Ninger, Yunnan, MS6.4 Earthquake Sequence[J]. Journal of Seismological Research, 2007, 30(4): 311-317)
    [6] 杨晓平, 陈立春, 马文涛, 等. 2007年6月3日宁洱6.4级地震地表变形的构造分析和解释[J]. 地震学报, 2008, 30(2): 165-175(Yang Xiaoping, Chen Lichun, Ma Wentao, et al. Structural Analysis and Interpretation of the Surface Deformation Associated with the Ninger, Yunnan Province, China MS6.4 Earthquake of June 3, 2007[J]. Acta Seismologica Sinica, 2008, 30(2): 165-175)
    [7] 张勇, 许力生, 陈运泰, 等. 2007年云南宁洱MS6.4地震震源过程[J]. 中国科学D辑: 地球科学, 2008(6): 683-692(Zhang Yong, Xu Lisheng, Chen Yuntai, et al. Source Process of MS6.4 Earthquake in Ninger, Yunnan in 2007[J]. Science in China Series D: Earth Science, 2008(6): 683-692)
    [8] Ding C,Feng G C, Li Z W, et al. Spatio-Temporal Error Sources Analysis and Accuracy Improvement in Landsat 8 Image Ground Displacement Measurements[J]. Remote Sensing, 2016, 8(11):937
    [9] Wegmüller U, Werner C. Gamma SARProcessor and Interferometry Software[C]. The 3th ERS Symposium on Space at the Service of Our Environment, 1997
    [10] Jonsson S, Zebker H, Segall P, et al. Fault Slip Distribution of the 1999 MW7.1 Hector Mine, California Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1 377-1 389
    [11] Okada Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1 135-1 154
    [12] 冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4): 1 189-1 196(Feng Wanpeng, Li Zhenhong. A Novel Hybrid PSO/Simplex Algorithm for Determining Earthquake Source Parameters Using InSAR Data[J]. Progress in Geophysics, 2010, 25(4): 1 189-1 196)
    [13] 王乐洋, 高华, 冯光财. 2016年台湾美浓MW6.4地震震源参数的InSAR和GPS反演[J]. 地球物理学报, 2017, 60(7): 2 578-2 588(Wang Leyang, Gao Hua, Feng Guangcai. InSAR and GPS Inversion for Source Parameters of the 2016 MW6.4 Meinong, Taiwan Earthquake[J]. Chinese Journal of Geophysics, 2017, 60(7): 2 578-2 588)
    [14] Feng G C, Li Z W, Shan X J, et al. Geodetic Model of the April 25, 2015 MW7.8 Gorkha Nepal Earthquake and MW7.3 Aftershock Estimated from InSAR and GPS Data[J]. Geophysical Journal International, 2015, 203(2): 896-900
    [15] 周辉, 冯光财, 李志伟, 等. 利用InSAR资料反演缅甸MW6.8地震断层滑动分布[J]. 地球物理学报, 2013, 56(9): 3 011-3 021(Zhou Hui, Feng Guangcai, Li Zhiwei, et al. The Fault Slip Distribution of the Myanmar MW6.8 Earthquake Inferred from InSAR Measurements[J]. Chinese Journal of Geophysics, 2013, 56(9): 3 011-3 021)
    [16] Sumy D F, Cochran E S, Keranen K M, et al. Observations of Static Coulomb Stress Triggering of the November 2011 MW5.7 Oklahoma Earthquake Sequence[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):1 904-1 923
    [17] 常祖峰, 陈晓利, 陈宇军, 等. 景谷MS6.6地震同震地表破坏特征与孕震构造[J]. 地球物理学报, 2016, 59(7): 2 539-2 552(Chang Zufeng, Chen Xiaoli, Chen Yujun, et al. The Co-Seismic Ground Failures and Seismogenic Structure of the Jinggu MS6.6 Earthquake[J]. Chinese Journal of Geophysics, 2016, 59(7): 2 539-2 552)
    [18] Stein R S. The Role of Stress Transfer in Earthquake Occurrence[J]. Nature, 2000, 402(6 762):605-609
    [19] Fialko Y, Sandwell D, Simons M, et al. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit[J]. Nature, 2005, 435(7 040):295-299