超声波及分散剂对纳米SiO_2/CaCO_3/Al_2O_3颗粒分散特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Dispersion Characteristics of Nano-SiO_2/CaCO_3/Al_2O_3 by Ultrasonic and Dispersants
  • 作者:许耀群 ; 李曙光 ; 王娟 ; 武霄鹏
  • 英文作者:XU Yaoqun;LI Shuguang;WANG Juan;WU Xiaopeng;College of Water Conservancy and Environment Engineering,Zhengzhou University;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research;
  • 关键词:纳米颗粒 ; 超声波 ; 分散剂 ; 吸光度 ; 胶体稳定
  • 英文关键词:nano-particles;;ultrasonic;;dispersants;;absorbance;;colloidal stability
  • 中文刊名:CLDB
  • 英文刊名:Materials Review
  • 机构:郑州大学水利与环境学院;中国水利水电科学研究院流域水循环模拟与调控国家重点实验室;
  • 出版日期:2018-05-25
  • 出版单位:材料导报
  • 年:2018
  • 期:v.32
  • 基金:十三五计划(2016YFB0303601);; 国家自然科学基金(51409284;51309203);; 中国水利水电科学研究院流域水循环模拟与调控国家重点实验室课题(2016TS10;SKL2017CGS05;IWHR-SKL-201512)
  • 语种:中文;
  • 页:CLDB2018S1066
  • 页数:5
  • CN:S1
  • ISSN:50-1078/TB
  • 分类号:309-313
摘要
在材料科学领域,颗粒的均匀分散是获得具有较好的显微结构和性能材料制品的基础。采用分光光度计法表征分散效果,研究了超声波及不同分散稳定剂复合作用下纳米SiO_2、纳米CaCO_3、纳米Al_2O_3颗粒的分散性能,并结合DLVO理论探讨了分散机理,给出了分散剂优选方案。结果表明,超声波处理纳米颗粒悬浮液可以有效打破纳米颗粒团聚;不同分散剂对不同纳米颗粒的分散效果差异较大,NS颗粒相比NC、NA更难被分散剂分散,分散剂SHMP、SDBS作用效果随用量的增大先增强后减弱,分散剂PCS作用效果随用量的增加而增强;分散剂种类、用量会影响纳米悬浮颗粒的双电层厚度和颗粒周围空间微环境,从而影响分散体系的稳定性。
        In the field of materials science,the uniform dispersion of particles is the basis for obtaining the material products with better microstructure and properties.In this paper,the dispersion properties of nano-SiO_2,nano-CaCO_3 and nano-Al_2O_3 particles under the combined action of ultrasonic and different dispersion stabilizers were studied,and the dispersion effect was characterized by spectrophotometer method.The dispersion mechanism was discussed in combination with DLVO theory,and the optimal dispersant solution was given.The results show that the ultrasonic can effectively break the agglomeration and different dispersants have different dispersion effects on different nano-particles,the effect of dispersant SHMP and SDBS increased first and then decreased with the increase of dosage,and the effect of dispersant PCS increased with the increase of dosage;the type and amount of dispersant will affect the double-layer thickness and the micro-environment around the particles,which will affect the stability of the dispersion.
引文
1周邵萍,葛晓陵.TiO2悬浮液颗粒团聚机理及团聚分形特征研究[J].硅酸盐通报,2013,32(8):1680.
    2 Safinajafabadi A,Sarraf-Mamoory R,Karimi Z.Effect of organic dispersants on structural and mechanical properties of Al2O3/ZrO2composites[J].Materials Research Bulletin,2012,47(12):4210.
    3 Gao M,Zhang P,Wang F,et al.The relationship between dielectric properties and nanoparticle dispersion of nano-SILICA/Epoxy composites[C]∥Electrical Insulation and Dielectric Phenomena,2014:234.
    4 Kim J,Yeom J,Ha K,et al.Ultrasonic streaming and cavitation for nano particle dispersion[C]∥Ultrasonics Symposium,2016:1.
    5 肖佳,申闯,王大富,等.纳米SiO2的分散性对水泥胶砂强度的影响[J].硅酸盐通报,2017,36(3):984.
    6 王沛,朱峰,王志强.超声波以及分散剂对纳米金刚石在水性介质中分散行为的影响[J].金刚石与磨料磨具工程,2015,35(2):46.
    7 Manoochehri M,Asgharinezhad A A,Safaei M.Determination of aflatoxins in rice samples by ultrasound-assisted matrix solid-phase dispersion[J].Journal of Chromatographic Science,2015,53(1):189.
    8 Hwangbo S,Kim J,Chu M,et al.Nanoparticle dispersion by focused ultrasound from cylindrical transducer[C]∥Ultrasonics Symposium,2014:2126.
    9 Wang X,Le L,Wang A,et al.Comparative study on properties,mechanisms of anionic dispersant modified nano zero-valent iron for removal of Cr(Ⅵ)[J].Journal of the Taiwan Institute of Chemical Engineers,2016,66:115.
    10 莫子勇,吴张永,龙威,等.纳米碳化钛悬浮体分散特性研究[J].硅酸盐通报,2014,33(8):2085.
    11 Liu X,Yu L,Ma X,et al.Studies on the compound conditions of nano-SiO2based ACQ preservative[M].Singapore:Springer,2016.
    12 葛明桥,梁文玉,李永贵.纳米CaCO3在水中的分散[J].纺织学报,2007,28(1):63.
    13 Wu Y,Zhao J,Li Y,et al.Preparation and freezing behavior of TiO2nanoparticle suspensions[J].Ceramics International,2016,42(14):15597.
    14 Aruna S T,Anandan C,Grips V K W.Effect of probe sonication and sodium hexametaphosphate on the microhardness and wear behavior of electrodeposited Ni-SiC composite coating[J].Applied Surface Science,2014,301(19):383.
    15 Kulkarni A,Mukhopadhyay N,Bhattacharyya A R,et al.Dispersion of non-covalently modified graphene in aqueous medium:A molecular dynamics simulation approach[J].RSC Advances,2017,7(8):4460.
    16 Akalin M,Merdan N,Kocak D,et al.Effects of ultrasonic energy on the wash fastness of reactive dyes[J].Ultrasonics,2004,42(1-9):161.
    17 邱正松,王在明,胡红福,等.纳米碳酸钙抗团聚机理及分散规律实验研究[J].石油学报,2008,29(1):124.
    18 Ejaz M,Alb A M,Grayson S M.Amphiphilic hyperbranched polyglycerol-block-polycaprolactone copolymer-grafted nanoparticles with improved encapsulation properties[J].Reactive&Functional Polymers,2016,102:39.
    19 Arai S,Osaki T.Fabrication of copper/multiwalled carbon nanotube composites containing different sized nanotubes by electroless deposition[J].Journal of the Electrochemical Society,2014,162(1):D68.
    20 Huang C,Wang D.Surface modification of nano-SiO2particles with polycarboxylate ether-based superplasticizer under microwave irradiation[J].Chemistryselect,2017,2(29):9349.
    21 Shen H,Zhao Y,Hu M,et al.Preparation and adsorption properties of polycarboxylate nano Fe3O4 magnetic composite particles[J].Acta Materiae Compositae Sinica,2009,26(4):68.
    22 齐利民.胶体与界面化学[M].广州:华南理工大学出版社,2017.
    23 Derjaguin B,Landau L.Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes[J].Progress in Surface Science,1941,43(1-4):30.
    24 Verwey E J.Theory of the stability of lyophobic colloids[J].Journal of Physical&Colloid Chemistry,1955,10(2):224.
    25 杨静漪,杨丰科.纳米ZrO2水悬浮液稳定性的研究[J].无机材料学报,1997,12(5):665.
    26 Wee S B,An G S,Han J S,et al.Co-dispersion behavior and interactions of nano-ZrB2and nano-SiC in a non-aqueous solvent[J].Ceramics International,2016,42(4):4658.
    27 宋晓岚,吴雪兰,曲鹏,等.纳米SiO2分散稳定性能影响因素及作用机理研究[J].硅酸盐通报,2005,24(1):3.