两相区形变对含铜低碳钢合金元素配分的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Intercritical Deformation on Alloy Elements Partitioning of Copper-bearing Low-carbon Steel
  • 作者:陈连生 ; 李跃 ; 田亚强 ; 郑小平 ; 魏英立 ; 宋进英
  • 英文作者:CHEN Liansheng;LI Yue;TIAN Yaqiang;ZHENG Xiaoping;WEI Yingli;SONG Jinying;Key Laboratory of the Ministry of Education for Modern Metallurgy Technology,North China University of Science and Technology;
  • 关键词:含铜低碳钢 ; 两相区形变 ; 位错增殖 ; 空位 ; 合金元素配分
  • 英文关键词:copper-bearing low-carbon steel;;intercritical deformation;;dislocation multiplication;;vacancy;;alloy elements partitioning
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:华北理工大学教育部现代冶金技术重点实验室;
  • 出版日期:2019-03-25
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51574107);; 河北省自然科学基金(E2016209048;E2017209048);; 唐山市科技创新团队(15130202C);; 河北省研究生创新项目(2017S01)~~
  • 语种:中文;
  • 页:CLDB201906024
  • 页数:4
  • CN:06
  • ISSN:50-1078/TB
  • 分类号:119-122
摘要
采用DIQ(两相区形变-保温-淬火)热处理工艺,借助扫描电镜(SEM)及透射电镜(TEM)等测试手段研究了两相区不同变形量对一种含Cu低碳钢组织演变、位错密度和Mn、Cu合金元素配分行为与分布的影响规律。结果表明,对于经历了两相区热模拟压缩变形处理的含Cu低碳钢,随变形量的增加,铁素体和马氏体组织均趋于细化,位错密度逐渐增加,合金元素配分行为先增强后减弱。两相区变形处理的变形量为10%时,Mn、Cu原子的配分效果最好,二者在马氏体中的平均含量较原实验钢分别提高了62.82%和20.73%。
        The purpose of the present work was to study a novel heat treatment process,i.e. intercritical deformation-intercritical annealing-quenching( DIQ),for the microstructure improvement of copper-bearing low-carbon steel. The thermal simulation test was conducted and the microscopic observation of SEM and TEM were employed to analyze the microstructure evolution,dislocation density,and Mn,Cu elements partitioning and distribution within the Cu-bearing low-carbon steel specimens experienced the DIQ processes differing in deformation extent. The results indicated that,for the experimental steel processed by simulated DIQ,a larger deformation extent can lead to the refinement of ferrite and martensite,the gradual increase in dislocation density,and the biphasic change( enhanced → attenuated) of the alloy elements partitioning behavior. Through the DIQ treatment with 10% deformation,the best partitioning of Mn and Cu atoms could be achieved,as the average concentration of Mn and Cu within martensite increased by 62. 82% and 20. 73%,respectively,compared with the original steel specimen.
引文
1 Kang Y L, Zhu G M. Iron and Steel,2014,49(12),1(in Chinese).康永林, 朱国明. 钢铁,2014,49(12),1.
    2 Zhao J W, Jiang Z Y.Progress in Materials Science,2018,94(5),174.
    3 Speer J, Matlock D K, Cooman B C D, et al. Acta Materialia,2003,51(9),2611.
    4 Cho L, Seo E J, Cooman B C D. Scripta Materialia,2016,123,69.
    5 Santofimia M J, Speer J G, Clarke A J, et al. Acta Materialia,2009,57(15),4548.
    6 Yan S, Liu X H, Liu W J, et al. Materials Science & Engineering A,2017,684,261.
    7 Moor E D, Matlock D K, Speer J G, et al. Scripta Materialia,2011,64(2),185.
    8 Lee S, Lee S J, Cooman B C D. Scripta Materialia,2011,65(3),225.
    9 Seo E J, Cho L, Estrin Y, et al. Acta Materialia,2016,113,124.
    10 Yan S, Liu X H, Liu W J, et al. Acta Metallurgica Sinica,2013,49(8),917(in Chinese).闫述, 刘相华, 刘伟杰, 等. 金属学报,2013,49(8),917.
    11 Wang X J, Shen Q, Yan J J, et al. Acta Metallurgica Sinica,2014,50(11),1305(in Chinese).王晓姣, 沈琴, 严菊杰, 等.金属学报,2014,50(11),1305.
    12 Chen L S, Zhang J Y, Tian Y Q, et al. Acta Metallurgica Sinica,2015,51(5),527(in Chinese).陈连生, 张健杨, 田亚强,等. 金属学报,2015,51(5),527.
    13 Chen L S, Cao H Z, Tian Y Q, et al. Materials Review B:Research Papers,2017,31(3),105(in Chinese).陈连生, 曹鸿梓, 田亚强, 等. 材料导报:研究篇,2017,31(3),105.
    14 Chen L S, Hu B J, Song J Y, et al. Journal of Materials Engineering,2017,45(2),96(in Chinese).陈连生, 胡宝佳, 宋进英, 等. 材料工程,2017,45(2),96.
    15 Tian Y Q, Zhang H J, Chen L S, et al. Acta Metallurgica Sinica,2014,50(5),531(in Chinese).田亚强, 张宏军, 陈连生, 等. 金属学报,2014,50(5),531.
    16 Kojima A, Watanabe Y, Terada Y, et al. ISIJ International,1996,36(5),603.
    17 Calcagnotto M, Adachi Y, Ponge D, et al. Acta Materialia,2011,59(2),658.
    18 Cui Z Q, Tan Y C. Metallgraphy & Heat Treatment, China Machine Press, China,2009(in Chinese).崔忠圻, 覃耀春. 金属学与热处理, 机械工业出版社,2009.
    19 Browning N D, Chisholm M F, Pennycook S J. Nature,1993,366(6451),143.
    20 Ye C H, Wei X, Lu H. Materials Review B:Research Papers,2016,30(4),132(in Chinese).叶诚辉, 魏啸, 陆皓. 材料导报:研究篇,2016,30(4),132.
    21 Kostka A, Tak K G, Hellmig R J, et al. Acta Materialia,2007,55(2),539.
    22 Zhao H S, Li W,Zhu X, et al. Materials Science & Engineering: A,2016,649,18.
    23 Pe?icka J, Ku?el R, Dronhofer A, et al. Acta Materialia,2003,51(16),4847.
    24 Yabuuchi K, Kasada R, Kimura A. Acta Materialia,2013,61(17),6517.
    25 Etesami S A, Enayati M H. Journal of Materials Engineering & Perfor-mance,2016,25(2),349.
    26 Hu G X. Fundamentals of Materials Science, Shanghai Jiao Tong University Press, China,2010(in Chinese).胡赓祥. 材料科学基础, 上海交通大学出版社, 2010.
    27 Kuang S, Kang Y L, Yu H, et al. Chinese Journal of Engineering,2008,30(8),858(in Chinese).邝霜, 康永林, 于浩, 等. 工程科学学报,2008,30(8),858.