气井积液预测研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in liquid loading prediction of gas wells
  • 作者:张烈辉 ; 罗程程 ; 刘永辉 ; 赵玉龙 ; 谢春雨 ; 张琦 ; 艾先婷
  • 英文作者:Zhang Liehui;Luo Chengcheng;Liu Yonghui;Zhao Yulong;Xie Chunyu;Zhang Qi;Ai Xianting;State Key Laboratory for Oil & Gas Reservoir Geology and Exploitation//Southwest Petroleum University;HSE and Technical Supervision Research Institute, PetroChina Southwest Oil & Gasfield Company;Northeast Sichuan Division, PetroChina Southwest Oil & Gasfield Company;
  • 关键词:气井积液 ; 液滴反转模型 ; 液膜反转模型 ; 气井稳定性分析 ; 地层—井筒耦合 ; 数值模拟 ; 实验室试验
  • 英文关键词:Liquid loading of gas wells;;Liquid-droplet reversal model;;Liquid-film reversal model;;Stability analysis on gas well;;Formation–wellbore coupling;;Numerical simulation;;Laboratory experiment
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:"油气藏地质及开发工程"国家重点实验室·西南石油大学;中国石油西南油气田公司安全环保与技术监督研究院;中国石油西南油气田公司川东北气矿;
  • 出版日期:2019-01-29 16:50
  • 出版单位:天然气工业
  • 年:2019
  • 期:v.39;No.303
  • 基金:国家自然科学基金重大项目“致密气藏储层干化、提高气体渗流能力的基础研究”(编号:51534006)、国家自然科学基金项目“基于边界元法的页岩气藏缝网多段压裂水平井不稳定渗流理论研究”(编号:51704247)、国家自然科学基金项目“耦合压裂缝网扩展机制的页岩气藏动态模拟研究”(编号:51874251)
  • 语种:中文;
  • 页:TRQG201901008
  • 页数:7
  • CN:01
  • ISSN:51-1179/TE
  • 分类号:63-69
摘要
准确预测气井积液时间并及时采取排水采气工艺措施,对于维持低产气井稳定生产至关重要。为此,基于对国内外气井积液预测方法及积液气井数值模拟方法的广泛调研和总结,综合分析了目前解释气井积液的液滴反转模型、液膜反转模型和气井稳定性分析方法,阐述了积液气井瞬态数值模拟的研究进展。研究结果表明:(1)不同积液预测模型计算值之间及不同类型气藏气井携液临界气量之间存在着巨大的偏差,引起气井积液的机理不仅仅由单一液体反转现象造成,而是地层与井筒共同作用的结果 ;(2)液体反转理论在解释气井出现动液面上有悖于气液两相管流的基本规律,气井动液面的产生与气井受到瞬态扰动相关。在上述研究的基础上,指出了气井积液机理研究的发展方向:结合地层数值模拟,建立合理井筒压力波动模型并将其考虑为内边界条件,开展地层—井筒耦合实验及理论研究,揭示不同类型气藏积液的控制机理并建立相应积液预测模型,以期为气井排水采气工艺设计提供理论依据和技术支撑。
        In order to maintain the stable production of low-yield gas wells, it is crucial to accurately predict the onset of liquid loading and take the technical measures of drainage gas recovery in time. In this paper, domestic and foreign prediction and numerical simulation methods used for liquid loading in gas wells were extensively investigated and summarized. Then, the methods which are currently used to interpret the liquid loading in gas wells were analyzed comprehensively, including liquid-droplet reversal model, liquid-film reversal model and gas-well stability analysis method. Finally, the research progress in the transient numerical simulation of gas wells with liquid loading was illustrated. And the following research results were obtained. First, the calculation results of different liquid-loading prediction models and the critical liquid-carrying gas rates of gas wells in different gas reservoirs are greatly different. The mechanism of liquid loading in gas wells is not only caused by single liquid reversal phenomenon, but also the joint effect of formation and wellbore. Second, in interpreting the dynamic liquid level of gas well, the liquid reversal theory is contrary to the basic rule of gas–liquid two-phase pipe flow. The dynamic liquid level of gas well is related to the transient disturbance of gas well. Based on above studies, the development direction of the studies on the mechanism of liquid loading in gas wells was pointed out as follows. Establish a reasonable wellbore pressure fluctuation model on the basis of the numerical reservoir simulation, and take it as the inner boundary condition. Carry out experimental and theoretical studies on formation–wellbore coupling. Reveal the control mechanisms of liquid loading in different types of reservoirs, and establish liquid-loading prediction model correspondingly so as to provide theoretical basis and technical support for the design of drainage gas recovery of gas wells.
引文
[1]Lea JF,NickensHV&Wells MR.Gas well deliquification[M].Amsterdam:Elsevier Press,2003.
    [2]Waltrich PJ,Posada C,Martinez J,Falcone G&Barbosa JR Jr.Experimental investigation on the prediction of liquid loading initiation in gas wells using a long vertical tube[J].Journal of Natural Gas Science&Engineering,2015,26:1515-1529.
    [3]赵哲军,刘通,许剑,朱江,杨逸.气井稳定携液之我见[J].天然气工业,2015,35(6):59-63.Zhao Zhejun,Liu Tong,Xu Jian,Zhu Jiang&Yang Yi.Stable fluid-carrying capacity of gas wells[J].Natural Gas Industry,2015,35(6):59-63.
    [4]薛承文,谢文强,高涵,池明,张国红,郭玲,等.旋流雾化排液采气工艺及其关键参数[J].天然气工业,2018,38(6):76-82.Xue Chengwen,Xie Wenqiang,Gao Han,Chi Ming,Zhang Guohong,Guo Ling,et al.Cyclone atomization based drainage gas recovery technology and its key parameters[J].Natural Gas Industry,2018,38(6):76-82.
    [5]刘通,周兴付,陈海龙,鲁光亮,赵哲军,刘大永,等.毛细管泡沫排液采气工艺在低压、小液量水平井中的推广应用--以川西坳陷中浅层气藏为例[J].天然气工业,2018,38(6):83-90.Liu Tong,Zhou Xingfu,Chen Hailong,Lu Guangliang,Zhao Zhejun,Liu Dayong,et al.Popularization and application of capillary foam deliquification technology in horizontal wells with low pressures and low liquid production rates:A case study on middle-shallow gas reservoirs in the Western Sichuan Depression[J].Natural Gas Industry,2018,38(6):83-90.
    [6]周兴付,杨功田,高升,王守信.川西气田大斜度井临界携液模拟实验研究[J].钻采工艺,2012,35(4):47-49.Zhou Xingfu,Yang Gongtian,Gao Sheng&Wang Shouxin.Simulation experiment on critical on liquid-carrying in high angle deviated wells of West Sichuan Gas Field[J].Drilling&Production Technology,2012,35(4):47-49.
    [7]刘会会,范继武,许珍萍,于占海.动能因子在苏里格气井积液时机判断中的应用[J].石油化工应用,2014,33(7):45-48.Liu Huihui,Fan Jiwu,Xu Zhenping&Yu Zhanhai.The application of kinetic energy factor in diagnosing the timing of wellbore accumulation in gas wells[J].Petrochemical Industry Application,2014,33(7):45-48.
    [8]Turner RG,Hubbard MG&Dukler AE.Analysis and prediction of minimum flow rate for the continuous removal of liquid from gas wells[J].Journal of Petroleum Technology,1969,21(11):1475-1482.
    [9]Coleman SB,Clay HB,Mccurdy DG&Norris LH.A new look at predicting gas-well load-up[J].Journal of Petroleum Technology,1991,43(3):329-333.
    [10]Guo BY,Ghalambor A&Xu CC.A systematic approach to predicting liquid loading in gas wells[J].SPE Production&Operations,2006,21(1):81-88.
    [11]Nosseir MA,Darwich TA,Sayyouh MH&Sallaly ME.A new approach for accurate prediction of loading in gas wells under different flowing conditions[J].SPE Production&Facilities,2000,15(4):241-246.
    [12]李闽,郭平,谭光天.气井携液新观点[J].石油勘探与开发,2001,28(5):105-106.Li Min,Guo Ping&Tan Guangtian.New look on removing liquid from gas wells[J].Petroleum Exploration and Development.2001,28(5):105-106.
    [13]王志彬,李颖川.气井连续携液机理[J].石油学报,2012,33(4):681-686.Wang Zhibin&Li Yingchuan.The mechanism of continuously removing liquids from gas wells[J].Acta Petrolei Sinica,2012,33(4):681-686.
    [14]王毅忠,刘庆文.计算气井最小携液临界流量的新方法[J].大庆石油地质与开发,2007,26(6):82-85.Wang Yizhong&Liu Qingwen.The mechanism of continuously removing liquids from gas wells[J].Petroleum Geology&Oilfield Development in Daqing,2007,26(6):82-85.
    [15]谭晓华,李晓平.考虑气体连续携液及液滴直径影响的气井新模型[J].水动力学研究与进展,2013,28(1):41-47.Tan Xiaohua&Li Xiaoping.Gas wells model of continuous removal of liquids through a new estimation of droplet diameter[J].Journal of Hydrodynamics,2013,28(1):41-47.
    [16]Belfroid S,Schiferli W,Alberts G,Veeken CAM&Biezen E.Predicting onset and dynamic behaviour of liquid loading gas wells[C]//SPE Annual Technical Conference and Exhibition,21-24 September 2008,Denver,Colorado,USA.DOI:https://doi.org/10.2118/115567-MS.
    [17]Shi JT,Sun Z&Li XF.Analytical models for liquid loading in multifractured horizontal gas wells[J].SPE Journal,2016,21(2):471-487.
    [18]Fadili YE&Shah S.A new model for predicting critical gas rate in horizontal and deviated wells[J].Journal of Petroleum Science&Engineering,2016,150:154-161.
    [19]Veeken K,Hu B&Schiferli W.Gas-well liquid-loading-field-data analysis and multiphase-flow modeling[J].SPE Production&Operations,2010,25(3):275-284.
    [20]Guner M,Pereyra E,Sarica C&Torres C.Liquid loading of gas wells with deviations from 0°to 45°[C]//SPE Production and Operation Symposium,1-5 March 2015,Oklahoma City,Oklahoma,USA.DOI:https://doi.org/10.2118/173631-MS.
    [21]Alsaadi Y,Pereyra E,Torres C&Sarica C.Liquid loading of highly deviated gas wells from 60°to 88°[C]//SPE Annual Technical Conference and Exhibition,28-30 September 2015,Houston,Texas,USA.DOI:https://doi.org/10.2118/174852-MS.
    [22]Sarica C,Yuan G,Sutton RP&Pereyra EJ.An experimental study of liquid loading of vertical and deviated gas wells[C]//SPE Production and Operations Symposium,23-26 March 2013,Oklahoma City,Oklahoma,USA.
    [23]Kelkar MG,Pereyra EJ,Skopich A&Sarica C.Pipe diameter effect on liquid loading in vertical gas wells[C]//SPE Production and Operations Symposium,23-26 March 2013,Oklahoma City,Oklahoma,USA.
    [24]Wang ZB,Guo LJ,Wu W,Zhu SY&Zhou HY.Experimental study on the critical gas velocity of liquid-loading onset in an inclined coiled tube[J].Journal of Natural Gas Science&Engineering,2016,34:22-33.
    [25]Wallis,GB.One-dimensional two-phase flow[M].New York:McGraw-Hill,1969.
    [26]Barnea D.Transition from annular flow and from dispersed bubble flow-unified models for the whole range of pipe inclinations[J].International Journal of Multiphase Flow,1986,12(5):733-744.
    [27]肖高棉,李颖川,喻欣.气藏水平井连续携液理论与实验[J].西南石油大学学报(自然科学版),2010,32(3):122-126.Xiao Gaomian,Li Yingchuan&Yu Xin.Theory and experiment research on the liquid continuous removal of horizontal gas well[J].Journal of Southwest Petroleum University(Science&Technology Edition),2010,32(3):122-126.
    [28]陈德春,姚亚,韩昊,付刚,宋天娇,谢双喜.定向气井临界携液流量预测新模型[J].天然气工业,2016,36(6):40-44.Chen Dechun,Yao Ya,Han Hao,Fu Gang,Song Tianjiao&Xie Shuangxi.A new prediction model for critical liquid-carrying flow rate of directional gas wells[J].Natural Gas Industry,2016,36(6):40-44.
    [29]Luo S,Kelkar M,Pereyra E&Sarica C.A new comprehensive model for predicting liquid loading in gas wells[J].SPE Production&Operations,2014,29(4):337-349.
    [30]Paz RJ&Shoham O.Film-thickness distribution for annular flow in directional wells:Horizontal to vertical[J].SPE Journal,1999,4(2):83-91.
    [31]Li J,Almudairis F&Zhang H.Prediction of critical gas velocity of liquid unloading for entire well deviation[C]//International Petroleum Technology Conference,10-12 December 2014,Kuala Lumpur,Malaysia.DOI:https://doi.org/10.2523/IPTC-17846-MS.
    [32]Shekhar S,Kelkar M,Hearn WJ&Hain LL.Improved prediction of liquid loading in gas wells[J].SPE Production&Operations,2017,32(4):1-12.
    [33]Wang ZB,Guo LJ,Zhu SY&Nydal OJ.Prediction of the critical gas velocity of liquid unloading in a horizontal gas well[J].SPEJournal,2018,23(2):1-16.
    [34]Greene WR.Analyzing the performance of gas wells[J].Journal of Petroleum Technology,1983,35(7):1378-1384.
    [35]Oudeman P.Improved prediction of wet-gas-well performance[J].SPE Production Engineering,1990,5(3):212-216.
    [36]Pagan EV,Williams W&Waltrich PJ.A simplified transient model to predict liquid loading in gas wells[C]//SPE Western Regional Meeting,23-26 May 2016,Anchorage,Alaska,USA.DOI:https://doi.org/10.2118/180403-MS.
    [37]van't Westende JMC,Kemp HK,Belt RJ,Portela LM,Mudde RF&Oliemans RVA.On the role of droplets in cocurrent annular and churn-annular pipe flow[J].International Journal of Multiphase Flow,2007,33(6):595-615.
    [38]Alamu MB.Gas-well liquid loading probed with advanced instrumentation[J].SPE Journal,2012,17(1):251-270.
    [39]王琦,李颖川,王志彬,程金金.水平气井连续携液实验研究及模型评价[J].西南石油大学学报(自然科学版),2014,36(3):139-145.Wang Qi,Li Yingchuan,Wang Zhibin&Cheng Jinjin.Experimental study and model evaluation on continuous liquid removal in horizontal gas well[J].Journal of Southwest Petroleum University(Science&Technology Edition),2014,36(3):139-145.
    [40]Zabaras G,Dukler AE&Moalem MD.Vertical upward cocurrent gas-liquid annular flow[J].AIChe Journal,1986,32(5):829-843.
    [41]Dousi N,Veeken CAM&Currie PK.Modelling the gas well liquid loading process[C]//Offshore Europe,6-9 September 2005,Aberdeen,Scotland,UK.DOI:https://doi.org/10.2118/0306-0065-JPT.
    [42]Chupin G,Hu B,Haugset T,Sagen J&Claudel M.Integrated wellbore/reservoir model predicts flow transients in liquid-loaded gas wells[C]//SPE Annual Technical Conference&Exhibition,11-14 November 2007,Anaheim,California,USA.DOI:https://doi.org/10.2118/1107-0095-JPT.
    [43]Hu B,Veeken C,Yusuf R&Holmas H.Use of wellbore-reservoir coupled dynamic simulation to evaluate the cycling capability of liquid-loaded gas wells[C]//SPE Annual Technical Conference&Exhibition,19-22 September 2010,Florence,Italy.DOI:https://doi.org/10.2118/134948-MS.
    [44]Zhang H,Falcone G,Valko PP&Teodoriu C.Numerical modeling of fully-transient flow in the near-wellbore region during liquid loading in gas wells[C]//SPE Latin American&Caribbean Petroleum Engineering Conference,31 May-3 June 2009,Cartagena,Colombia.DOI:https://doi.org/10.2118/122785-MS.
    [45]Liu X,Falcone G&Teodoriu C.Liquid loading in gas wells:From core-scale transient measurements to coupled field-scale simulations[J].Journal of Petroleum Science&Engineering,2017,157:1056-1066.
    [46]Limpasurat A,Valko PP&Falcone G.A new concept of wellbore-boundary condition for modeling liquid loading in gas wells[J].SPE Journal,2015,20(3):550-564.
    [47]Gaol AHL&Valko PP.Modeling wellbore liquid-content in liquid loading gas wells using the concept of characteristic velocity[C]//SPE Low Perm Symposium,5-6 May 2016,Denver,Colorado,USA.DOI:https://doi.org/10.2118/180210-MS.
    [48]杜殿发,赵艳武,张婧,刘长利,唐建信.页岩气渗流机理研究进展及发展趋势[J].西南石油大学学报(自然科学版),2017,39(4):136-144.Du Dianfa,Zhao Yanwu,Zhang Jing,Liu Changli&Tang Jianxin.Progress and trends in shale gas seepage mechanism research[J].Journal of Southwest Petroleum University(Science&Technology Edition),2017,39(4):136-144.