基于氧化铟气体传感器的研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:RESEARCH STATUS OF INDIUM OXIDE GAS SENSOR
  • 作者:臧传伟 ; 郭雨 ; 唐伟 ; 杜学舰 ; 修显武
  • 英文作者:Zang Chuanwei;Guo Yu;Tang Wei;Du Xuejian;Xiu Xianwu;School of Physics and Electronics,Shandong Normal University, Shandong Key Laboratory of Optical and Photonic Devices;School of Physics and Electronics,Shandong Normal University,Shandong Key Laboratory of Optical and Photonic Devices;
  • 关键词:氧化铟 ; 气敏材料 ; 气体传感器
  • 英文关键词:indium oxide;;gas sensing materials;;gas sensor
  • 中文刊名:SDZK
  • 英文刊名:Journal of Shandong Normal University(Natural Science)
  • 机构:山东师范大学物理与电子科学学院光学与光子器件山东省重点实验室;山东师范大学物理与电子科学学院光电功能材料与器件山东省"十三五"高校重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:山东师范大学学报(自然科学版)
  • 年:2019
  • 期:v.34;No.145
  • 语种:中文;
  • 页:SDZK201901013
  • 页数:4
  • CN:01
  • ISSN:37-1166/N
  • 分类号:88-91
摘要
氧化铟作为一种比较新的气敏材料,在一定程度上解决了现有气体传感器中存在的选择性差和工作温度高等问题.近几年来大量的文献报道了氧化铟传感器检测O_3、 CO、 NO_2等气体.本文按照被检测气体的种类,从In_2O_3的气敏材料制备及气敏性能两方面对现有In_2O_3气体传感器进行了论述,并指出了In_2O_3半导体气体传感器的发展方向.
        Since the birth of new gas-sensitive material of indium oxide, poor selectivity and high operating temperature in existing gas sensors have been solved to some extent. In recent years, indium oxide sensors detect gases such as O_3,CO,and NO_2 have been reported in a large number of literatures. Based on the type of gas to be tested, we discuss about the preparation and properties of In_2O_3 gas sensor,and then the development direction of In_2O_3 semiconductor gas sensor is pointed out.
引文
[1]Malchenko S N,Lychkovsky Y N,Baykov M V.In2O3-based gas sensors[J]. Sensors and Actuators B: Chemical, 1993, 13(1-3):159-161.
    [2]Sauter D , Weimar U , Noetzel G , et al. Development of modular ozone sensor system for application in practical use[J]. Sensors and Actuators B:Chemical, 2000, 69(1-2):1-9.
    [3]孙良彦, 刘正绣. 常温振荡式CO气敏元件的研制[J].传感器技术,1995,(1):10-12.
    [4]Donato N , Neri F , Neri G , et al. CO sensing devices based on indium oxide nanoparticles prepared by laser ablation in water[J]. Thin Solid Films, 2011, 520(3):922-926.
    [5]Singh V N , Mehta B R , Joshi R K , et al. Size-dependent gas sensing properties of Indium Oxide nanoparticle layers[J]. Journal of Nanoscience and Nanotechnology, 2007, 7(6):1930.
    [6]Malagu C , Guidi V , Stefancich M , et al. Model for schottky barrier and surface states in nanostructured n-type semiconductors[J]. Journal of Applied Physics, 2002, 91(2):808-814.
    [7]Lim S K , Hwang S H , Chang D , et al. Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor[J].Sensors and Actuators B:Chemical, 2010, 149(1):28-33.
    [8]Zhang D, Wu J, Cao Y. Fabrication cobalt-doped Indium Oxide/molybdenum disulfide ternary nanocomposite toward Carbon Monoxide gas sensing[J]. Journal of Alloys and Compounds, 2019,777:443-453.
    [9]Zhang D, Jiang C, Yao Y, et al. Room-temperature highly sensitive CO gas sensor based on Ag-loaded Zinc Oxide/molybdenum disulfide ternary nanocomposite and its sensing properties[J]. Sensors and Actuators B: Chemical, 2017, 253: 1120-1128.
    [10] Zhang D, Jiang C, Liu J, et al. Carbon monoxide gas sensing at room temperature using copper Oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly[J]. Sensors and Actuators B: Chemical, 2017, 247: 875-882.
    [11] Joshi R K, Weber J E, Hu Q, et al. Carbon monoxide sensing at room temperature via electron donation in boron doped diamond films[J]. Sensors and Actuators B: Chemical, 2010, 145(1): 527-532.
    [12] Kim D , Pikhitsa P V , Yang H , et al. Room temperature CO and H2 sensing with Carbon nanoparticles.[J]. Nanotechnology, 2011, 22(48):485501.
    [13] Shojaee M, Nasresfahani S, Sheikhi M H. Hydrothermally synthesized Pd-loaded SnO2 partially reduced graphene oxide nanocomposite for effective detection of Carbon monoxide at room temperature[J]. Sensors and Actuators B:Chemical, 2018, 254: 457-467.
    [14] Wang C Y,Becker R W,Passow T,et al.Photon stimulated sensor based on Indium Oxide nanoparticles I: Wide-concentration-range ozone monitoring in air[J].Sensors and Actuators B:Chemical, 2011, 152(2):235-240.
    [15] Rocha L S R , Foschini C R ,Silva C C , et al. Novel Ozone gas sensor based on ZnO nanostructures grown by the microwave-assisted hydrothermal route[J]. Ceramics International, 2016, 42(3):4539-4545.
    [16] Belaqziz M,Mbarek Amjoud, Gaddari A , et al. Enhanced room temperature ozone response of SnO2 thin film sensor[J]. Superlattices Microstructures, 2014, 71(7):185-189.
    [17] Mastelaro V R , Sérgio C. Zílio, Silva L F D , et al. Ozone gas sensor based on nanocrystalline SrTi1xFexO3 thin films[J]. Sensors and Actuators B:Chemical, 2013, 181(3):919-924.
    [18] Korotcenkov G,Brinzari V,Cho B K.Thin film SnO2 and In2O3 ozone sensor design:The film parameters selection[J]. Applied Mechanics and Materials, 2015, 799-800:910-914.
    [19] Selvakumar D , Rajeshkumar P , Dharmaraj N , et al. NO2 Gas sensing properties of hydrothermally prepared platinum doped Indium Oxide nanoparticles[J]. Materials Today: Proceedings, 2016, 3(6):1725-1729.
    [20] Spray pyrolyzed indium oxide thick films as NO2 gas sensor[J]. Ceramics International, 2016, 42(14):16160-16168.
    [21] Cui S , Wen Z , Huang X , et al. Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air[J]. Small, 2015, 11(19):2305-2313.
    [22] Zhang H , Feng J , Fei T , et al. SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature[J].Sensors and Actuators B:Chemical, 2014, 190:472-478.
    [23] Zhang D , Liu J , Xia B . Nitrogen Dioxide-sensing properties at room temperature of metal Oxide-Modified Graphene composite via one-step hydrothermal method[J].Journal of Electronic Materials, 2016, 45(8):4324-4330.
    [24] Gu D , Li X , Zhao Y , et al. Enhanced NO2 sensing of SnO2/SnS2 eterojunction based sensor[J].Sensors Actuators B:Chemical, 2017, 244:67-76.