Deformation and failure processes of kaolinite under tension:Insights from molecular dynamics simulations
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deformation and failure processes of kaolinite under tension:Insights from molecular dynamics simulations
  • 作者:Hua ; Yang ; ManChao ; He ; ChunSheng ; Lu ; WeiLi ; Gong
  • 英文作者:Hua Yang;ManChao He;ChunSheng Lu;WeiLi Gong;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology;Department of Mechanical Engineering, Curtin University;
  • 英文关键词:kaolinite;;micromechanics;;deformation;;fracture;;molecular dynamics
  • 中文刊名:JGXG
  • 英文刊名:中国科学:物理学 力学 天文学(英文版)
  • 机构:State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology;Department of Mechanical Engineering, Curtin University;
  • 出版日期:2019-01-09 15:03
  • 出版单位:Science China(Physics,Mechanics & Astronomy)
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Key Research and Development Program of China(Grant No.2016YFC0600901);; the Open Fund of State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology(Beijing)(Grant No.SKLGDUEK1516)
  • 语种:英文;
  • 页:JGXG201906007
  • 页数:9
  • CN:06
  • ISSN:11-5849/N
  • 分类号:55-63
摘要
As a primary constituent of soft rocks, kaolinite plays an important role in large deformations of underground structures, which usually leads to serious safety risks. This paper investigates the deformation and failure processes of kaolinite under tension using molecular dynamics simulations. Based on the atomistic scale of these deformation and failure processes and their stressstrain curves, Young's moduli and strengths in three crystal directions and the surface energy of the(001) plane were obtained,which were consistent with theoretical predictions. The number of broken bonds and their corresponding broken sequences were determined. The results of our study indicated that as more bonds break during tension, the initiation of crack led to a sharp decrease in stress. We also explored the influence of temperature on the mechanical properties of kaolinite, which indicated that as temperature increased, the tensile strength and Young's modulus decreased.
        As a primary constituent of soft rocks, kaolinite plays an important role in large deformations of underground structures, which usually leads to serious safety risks. This paper investigates the deformation and failure processes of kaolinite under tension using molecular dynamics simulations. Based on the atomistic scale of these deformation and failure processes and their stressstrain curves, Young's moduli and strengths in three crystal directions and the surface energy of the(001) plane were obtained,which were consistent with theoretical predictions. The number of broken bonds and their corresponding broken sequences were determined. The results of our study indicated that as more bonds break during tension, the initiation of crack led to a sharp decrease in stress. We also explored the influence of temperature on the mechanical properties of kaolinite, which indicated that as temperature increased, the tensile strength and Young's modulus decreased.
引文
1 D.C.Peckley,and T.Uchimura,Soils Found.49,51(2009).
    2 L.Wan,X.Peng,Z.Wei,and C.Yang,Disaster Adv.3,499(2010).
    3 P.Cao,Y.D.Wen,H.P.Wang,H.P.Yuan,and B.X.Yuan,Environ.Earth Sci.75,900(2016).
    4 W.Feng,R.Huang,and T.Li,Tunnell.Undergr.Space Tech.32,190(2012).
    5 M.O.Ciantia,R.Castellanza,and C.di Prisco,Rock Mech.Rock Eng.48,441(2015).
    6 T.Vanorio,M.Prasad,and A.Nur,Geophys.J.Int.155,319(2003).
    7 J.A.Ortega,F.J.Ulm,and Y.Abousleiman,Acta Geotech.2,155(2007).
    8 Y.Zhao,Q.Xue,H.J.Lu,and L.Lin,Environ.Eng.Manag.J.12,1903(2013).
    9 O.Mashtalir,M.Naguib,V.N.Mochalin,Y.Dall’Agnese,M.Heon,M.W.Barsoum,and Y.Gogotsi,Nat.Commun.4,216(2013).
    10 D.Ebrahimi,A.J.Whittle,and R.J.M.Pellenq,Clays Clay Miner.64,425(2016).
    11 A.Mikowski,P.Soares,F.Wypych,J.E.F.C.Gardolinski,and C.Lepienski,Philos.Mag.87,4445(2007).
    12 H.Sato,K.Ono,and T.Yamagishi,Am.Miner.90,1824(2005).
    13 Z.P.Xu,and Q.S.Zheng,Sci.China-Phys.Mech.Astron.61,074601(2018).
    14 D.Frenkel,and B.Smit,Understanding Molecular Simulation:From Algorithms to Applications(Academic Press,New York,2002).
    15 Q.Liu,S.Zhang,H.Cheng,D.Wang,X.Li,X.Hou,and R.L.Frost,J.Therm.Anal.Calorim.117,189(2014).
    16 S.A.Zielke,A.K.Bertram,and G.N.Patey,J.Phys.Chem.B 120,1726(2015).
    17 J.Zhou,X.Lu,and E.S.Boek,Clays Clay Miner 64,503(2016).
    18 X.Li,H.Li,and G.Yang,Sci.Rep.5,14377(2015).
    19 J.A.Greathouse,D.Geatches,D.Q.Pike,H.C.Greenwell,C.T.Johnston,J.Wilcox,and R.T.Cygan,Clays Clay Miner.63,185(2015).
    20 H.Cheng,S.Zhang,Q.Liu,X.Li,and R.L.Frost,Appl.Clay Sci.116-117,273(2015).
    21 S.Zhang,Q.Liu,F.Gao,X.Li,C.Liu,H.Li,S.A.Boyd,C.T.Johnston,and B.J.Teppen,J.Phys.Chem.C 121,402(2017).
    22 M.A.Mazo,L.I.Manevitch,E.B.Gusarova,M.Y.Shamaev,A.A.Berlin,N.K.Balabaev,and G.C.Rutledge,J.Phys.Chem.B 112,2964(2008).
    23 G.D.Zartman,H.Liu,B.Akdim,R.Pachter,and H.Heinz,J.Phys.Chem.C 114,1763(2010).
    24 G.Hantal,L.Brochard,H.Laubie,D.Ebrahimi,R.J.M.Pellenq,F.J.Ulm,and B.Coasne,Mol.Phys.112,1294(2014).
    25 S.L.Teich-McGoldrick,J.A.Greathouse,and R.T.Cygan,J.Phys.Chem.C 116,15099(2012).
    26 B.K.Benazzouz,and A.Zaoui,Mater.Chem.Phys.132,880(2012).
    27 D.L.Bish,Clays Clay Miner.41,738(1993).
    28 Accelrys Materials Studio,Version 7.0(Accelrys Software Inc.,San Diego(CA),2008).
    29 S.Plimpton,J.Comput.Phys.117,1(1995).
    30 R.T.Cygan,J.J.Liang,and A.G.Kalinichev,J.Phys.Chem.B 108,1255(2004).
    31 J.P.Larentzos,J.A.Greathouse,and R.T.Cygan,J.Phys.Chem.C111,12752(2007).
    32 B.Chen,J.R.G.Evans,H.C.Greenwell,P.Boulet,P.V.Coveney,A.A.Bowden,and A.Whiting,Chem.Soc.Rev.37,568(2008).
    33 T.A.Ho,D.V.Papavassiliou,L.L.Lee,and A.Striolo,Proc.Natl.Acad.Sci.108,16170(2011).
    34 S.Kerisit,M.Okumura,K.M.Rosso,and M.Machida,Clays Clay Miner 64,389(2016).
    35 L.Benco,D.Tunega,J.Hafner,and H.Lischka,J.Phys.Chem.B105,10812(2001).
    36 M.P.Allen,and D.J.Tildesley,Computer Simulation of Liquids(Oxford University Press,Oxford,1987),p.120.
    37 W.G.Hoover,Phys.Rev.A 31,1695(1985).
    38 B.K.Benazzouz,and A.Zaoui,Appl.Clay Sci.58,44(2012).
    39 M.F.Ashby,Materials Selection in Mechanical Design(ButterworthHeinemann,Oxford,2005),p.257.
    40 V.V.Murashov,and E.Demchuk,J.Phys.Chem.B 109,10835(2005).