亚声速涡轮导叶前缘气膜冷却特性实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Investigation of Leading Edge Film Cooling Characteristics of Subsonic Turbine Guide Vane
  • 作者:付仲议 ; 朱惠人 ; 姚春意 ; 高强
  • 英文作者:FU Zhong-yi;ZHU Hui-ren;YAO Chun-yi;GAO Qiang;School of Power and Energy,Northwestern Polytechnical University;
  • 关键词:前缘 ; 气膜冷却 ; 吹风比 ; 雷诺数 ; 主流湍流度 ; 换热系数
  • 英文关键词:Leading edge;;Film cooling;;Blowing ratio;;Reynolds number;;Mainstream turbulence intensity;;Heat transfer coefficient
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西北工业大学动力与能源学院;
  • 出版日期:2018-11-06 15:27
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.261
  • 基金:国家重点基础研究发展规划资助项目(2013CB035702)
  • 语种:中文;
  • 页:TJJS201903013
  • 页数:10
  • CN:03
  • ISSN:11-1813/V
  • 分类号:109-118
摘要
为了获得亚声速涡轮导叶的前缘气膜冷却特性,在短周期高速风洞中对涡轮导叶前缘后倾扩张型孔气膜冷却试验件进行了实验,获得了涡轮叶片表面在不同主流雷诺数(Re=3.0×10~5~9.0×10~5)、二次流吹风比(M=0.5~2.4)和主流湍流度(Tu=1.3%,14.7%)下的气膜冷却效率和换热系数分布。实验叶片前缘有8排后倾扩张型气膜孔形成前缘喷淋冷却结构。结果表明:叶片前缘和压力面冷却效率随着吹风比的增大而升高,吸力面冷却效率随着吹风比的增大先升高后降低,最佳吹风比为0.8;在主流雷诺数(Re=3.0×10~5~9.0×105),改变雷诺数对叶片表面冷却效率的分布规律影响较小;叶片表面冷却效率随着湍流度的升高而降低,在小吹风比M=0.5下,高主流湍流度下的平均冷却效率降低50%左右,在M=2.4工况下,高湍流度下的平均冷却效率降低10%左右;叶片前缘冷气出流区域和压力面相对弧长为-0.4        In order to study the leading edge film cooling characteristics of subsonic turbine guide vane,the film cooling effectiveness and heat transfer coefficient of leading edge film cooling turbine vane in different mainstream inlet Reynolds number(Re=3.0×10~5~9.0×10~5),second flow blowing ratio(M=0.5 ~2.4) and mainstream turbulence intensity(Tu=1.3%, 14.7%) conditions were measured in short-duration high speed wind tunnel. There are 8 laid-back shaped hole rows on the leading edge to obtain a showerhead film cooling. The results show that in the range of blowing ratios studied in the present paper, the film cooling effectiveness on leading edge and pressure side increases with blowing ratio increasing, while the film cooling effectiveness on the suction side increases and decreases with blowing ratio increasing, the optimum blowing ratio is 0.8. In the range of Re=3.0×10~5~9.0×10~(-5) the change of mainstream inlet Reynolds number has little effect on film cooling effectiveness distribution. The film cooling effectiveness decreases with turbulence intensity increasing, the average film cooling effectiveness at high mainstream turbulence intensity decreases around 50% in M=0.5 condition, while it decreases around 10% in M=2.4 condition; the heat transfer coefficient ratio on the leading edge and the coolant reattachment region of relative arc-0.4<5/S_(max)<-0.3 on pressure side is high. In high mainstream turbulence intensity condition, the heat transfer coefficient ratio is lower and the effects of blowing ratio on the heat transfer coefficient ratio are smaller.
引文
[1]Mehendale A B,Han J C.Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer[J].Journal of Turbomachinery,1992,114(4):707-715.
    [2]Mehendale A B,Han J C.Reynolds Number Effect on Leading Edge Film Effectiveness and Heat Transfer Coefficient[J].Journal of Heat Mass Transfer,1993,36(15):3723-3730.
    [3]Park S S,Ye J K,Kwak J S.Film-Cooling Effectiveness of Antivortex Holes at Three Different Mainstream Turbulence Levels[J].Journal of Propulsion&Power,2017,33(4):1-9.
    [4]Ekkad S V,Han J C,Du H.Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model:Effect of Free-Stream Turbulence and Coolant Density[J].Journal of Turbomachinery,1998,120:594-600.
    [5]朱惠人,许都纯,郭涛,等.叶片前缘气膜冷却换热的实验研究[J].推进技术,1999,20(2):64-68.(ZHU Hui-ren,XU Du-chun,GUO Tao,et al.Experimental Investigation of Film Cooling Heat Transfer on Turbine Blade Leading Edge[J].Journal of Propulsion Technology,1999,20(2):64-68.)
    [6]李广超,朱惠人,廖乃冰,等.带单排气膜孔的叶片前缘气膜冷却换热实验[J].推进技术,2008,29(3):290-294.(LI Guang-chao,ZHU Hui-ren,LIAO Naibing,et al.Experimental Investigation of Leading Edge Film Cooling Heat Transfer with a Row of Film Cooling Holes[J].Journal of Propulsion Technology,2008,29(3):290-294.)
    [7]李广超,朱惠人,白江涛,等.气膜孔布局对前缘气膜冷却效率影响的实验[J].推进技术,2008,29(2):153-157.(LI Guang-chao,ZHU Hui-ren,BAI Jiangtao,et al.Experimental Investigation of Film Cooling Effectiveness on Leading Edge with Various Geometries[J].Journal of Propulsion Technology,2008,29(2):153-157.)
    [8]赵丹,刘存良,朱惠人,等.涡轮叶片前缘对冲孔排气膜冷却特性的数值研究[J].航空动力学报,2017,32(11):2609-2618.
    [9]Liu C L,Zhu H R,Zhang Z W.Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes with Different Hole Pitches[R].ASME GT 2012-6827.
    [10]Kim Y J,Kim S M.Influence of Shaped Injection Holes on Turbine Blade Leading Edge Film Cooling[J].International Journal of Heat&Mass Transfer,2004,47(2):245-256.
    [11]Funazaki Ken-ichi,Kawabata H,Takahashi D,et al.Experimental and Numerical Studies on Leading Edge Film Cooling Performance:Effects of Hole Exit Shape and Freestream Turbulence[R].ASME GT 2012-6821.
    [12]Chowdhury N H K,Qureshi S A,Zhang M,et al.Influence of Turbine Blade Leading Edge Shape on Film Cooling with Cylindrical Holes[J].International Journal of Heat&Mass Transfer,2017,115:895-908.
    [13]James R W,Joshua B A.Convex Curvature Effects on Film Cooling Adiabatic Effectiveness[R].ASME GT2013-95243.
    [14]Goldstein R J,Stone L D.Row-of-Holes Film Cooling of a Convex and a Concave Wall at Low Injection Angles[J].Journal of Turbomachinery,1997,119(3):574-579.
    [15]Qin Y,Ren J,Jiang H.Effects of Streamwise Pressure Gradient and Convex Curvature on Film Cooling Effectiveness[R].ASME GT 2014-25808.
    [16]Rozati A,Tafti D K.Effect of Coolant-Mainstream Blowing Ratio on Leading Edge Film Cooling Flow and Heat Transfer-LES Investigation[J].International Journal of Heat&Fluid Flow,2008,29(4):857-873.
    [17]谭晓茗,朱兴丹,郭文,等.涡轮叶片前缘气膜冷却换热实验[J].航空动力学报,2014,29(11):2672-2678.
    [18]Guelailia A,Khorsi A,Hamidou M K.Computation of Leading Edge Film Cooling from a Console Geometry(Converging Slot Hole)[J].Thermophysics&Aeromechanics,2016,23(1):33-42.
    [19]Liu C,Zhu H R,Fu Z Y,et al.The Effects of Inlet Reynolds Number,Exit Mach Number and Incidence Angle on Leading Edge Film Cooling Effectiveness of a Turbine Blade in a Linear Transonic Cascade[R].ASME GT 2015-42888
    [20]A C Nix,A C Smith,T E Diller.High Intensity,Large Length-Scale Freestream Turbulence Generation in a Transonic Turbine Cascade[R].ASME GT 2002-30523.
    [21]刘聪,朱惠人,付仲议,等.涡轮导叶吸力面簸箕型孔气膜冷却特性实验研究[J].推进技术,2016,37(6):1142-1150.(LIU Cong,ZHU Hui-ren,FUZhong-yi,et al.Experimental Study of Film Cooling Characteristics for Dust-Pan Shaped Holes on Suction Side in Turbine Guide Vane[J].Journal of Propulsion Technology,2016,37(6):1142-1150.)
    [22]Fu Z Y,Zhu H R,Liu C L,et al.An Experimental Investigation of Full-Coverage Film Cooling Effectiveness and Heat Transfer Coefficient of a Turbine Guide Vane in a Linear Transonic Cascade[R].ASME GT 2012-56839.
    [23]李红才,朱惠人,任战鹏,等.短周期跨声速风洞叶栅换热实验验证[J].西安交通大学学报,2013,47(9):49-54.