双排孔顺-逆射流组合方式对气膜冷却的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Combination of Forward Jet and Backward Jet with Two Rows of Holes on Film Cooling
  • 作者:李广超 ; 高志阳 ; 张魏 ; 张国臣 ; 寇志海
  • 英文作者:LI Guang-chao;GAO Zhi-yang;ZHANG Wei;ZHANG Guo-chen;KOU Zhi-hai;Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aviation Propulsion System,Shenyang Aerospace University;
  • 关键词:气膜冷却 ; 射流 ; 逆向射流 ; 数值模拟
  • 英文关键词:Film cooling;;Jet;;Backward injection;;Numerical simulation
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:沈阳航空航天大学辽宁省航空推进系统先进测试技术重点实验室;
  • 出版日期:2018-12-04 11:13
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.261
  • 基金:国家自然科学基金(51406124);; 辽宁省自然科学基金(201602576)
  • 语种:中文;
  • 页:TJJS201903020
  • 页数:10
  • CN:03
  • ISSN:11-1813/V
  • 分类号:169-178
摘要
为了挖掘逆向射流气膜冷却潜力,数值模拟研究了顺向射流和逆向射流不同组合方式的双排孔气膜冷却叠加特性。吹风比变化为0.3~1.4。结果表明,展向平均气膜冷却效率数值模拟结果与实验值偏差小于9%。逆向射流在气膜孔出口产生的回流涡强化了气膜展向扩散,吹风比越大,强化效果越明显。吹风比为1.4时,与顺向射流+顺向射流组合结构的叠加区气膜冷却效率相比,上游顺向射流+下游逆向射流组合结构展向平均气膜冷却效率提高17%~233%,面平均气膜冷却效率提高64%;逆向射流+逆向射流组合结构展向平均气膜冷却效率提高0~410%,面平均气膜冷却效率提高62%;上游逆向射流+下游顺向射流组合展向平均气膜冷却效率提高16%~70%,面平均气膜冷却效率提高44%。
        In order to analyze the film cooling performance of backward injection, the film cooling superposition characteristics of two rows of holes with the different combinations of forward and backward injection were numerically simulated at blowing ratios from 0.3 to 1.4. Results show that the difference of the lateral averaged film effectiveness is less than 9% for the numerical and experimental data. The separation vortex generated at the outlet of the film hole strengthens the lateral diffusion of the coolant of the backward injection. The increased blowing ratio causes the more obvious enhancement effect. Compared with the structure combining the upstream forward and forward injections, the averaged film cooling effectiveness of the other three kinds of combinations is improved at blowing ratio of 1.4. The lateral averaged film effectiveness combining upstream forward and downstream injections increased by 17% to 233% depending on the different location and the surface averaged film cooling effectiveness increased by 64%. The lateral averaged film cooling effectiveness combining backward and backward injections increased by 0 to 410% and the surface averaged film cooling effectiveness increased by62%. The lateral averaged film cooling effectiveness combining backward and forward injections increased by16% to 70% and the surface averaged film cooling effectiveness increased by 44%.
引文
[1]曹玉璋.航空发动机传热学[M].北京:北京航空航天大学出版社,2005.
    [2]李广超,柏树生,吴冬,等.气膜孔形状对涡轮叶片气膜冷却影响的研究进展[J].热能动力工程,2010,25(6):5-9.
    [3]Aga V,Rose M G,Abhari R S,et al.Experimental Flow Structure Investigation of Compound Angled Film Cooling[J].Journal of Turbomachinery,2008,130(3).
    [4]Aga V,Abhari R S.Influence of Flow Structure on Compound Angled Film Cooling Effectiveness and Heat Transfer[J].Journal of Turbomachinery,2011,133(3).
    [5]刘捷,韩振兴,蒋洪德,等.不同复合角对平板气膜冷却特性影响的实验研究[J].工程热物理学报,2008,29(8):409-411.
    [6]Gritsch M,Schulz A,Wittig S.Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes with Expanded Exits[J].Journal of Turbomachinery,1998,120(3).
    [7]徐红洲,刘松龄,许都纯.单孔复合角气膜冷却的流动与传热的实验研究[J].推进技术,1996,17(6):12-17.(XU Hong-zhou,LIU Song-ling,XU Duchun.Experimental Investigation on Flow and Heat Transfer Around Single Film Cooling Hole with Compound-Angle[J].Journal of Propulsion Technology,1996,17(6):12-17.)
    [8]Gritsch M,Colban W,Sch?R H,et al.Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes[J].Journal of Turbomachinery,2005,127(4):718-725.
    [9]Barigozzi G,Franchini G,Perdichizzi A.The Effect of an Upstream Ramp on Cylindrical and Fan-Shaped Hole Film Cooling,Part I:Aerodynamic Results[R].ASMEGT 2007-27077.
    [10]Na S,Shih T I P.Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp[J].Journal of Heat Transfer,2007,129(4):931-938.
    [11]李佳,韩昌,任静,等.基于压敏漆的带横槽气膜冷却实验与数值研究[J].工程热物理学报,2010,31(2):239-242.
    [12]李广超,吴状,刘永泉,等.孔间距对锯齿槽改善气膜冷却特性影响[J].推进技术,2017,38(5):1065-1072.(LI Guang-chao,WU Zhuang,LIU Yongquan,et al.Effects of Hole Pitch on Characteristics of Improving Film Cooling by Sawtooth Slots[J].Journal of Propulsion Technology,2017,38(5):1065-1072.)
    [13]李广超,陈钰恺,刘永泉,等.利用W型槽提高气膜冷却效率机理[J].推进技术,2016,37(3):520-526.(LI Guang-chao,CHEN Yu-kai,LIU Yong-quan,et al.Mechanism on Increasing Film Cooling Effectiveness by W Shape Slots[J].Journal of Propulsion Technology,2016,37(3):520-526.)
    [14]Li X C.Numerical Simulation on Fluid Flow and Heat Transfer of Film Cooling with Backward Injection[C].Washington:International Heat Transfer Conference,2010.
    [15]Li X C,Subbuswamy G,Zhou J.Performance of Gas Turbine Film Cooling with Backward Injection[J].Energy&Power Engineering,2013,5(4):132-137.
    [16]Chen A F,Li S,Han J.Film Cooling with Forward and Backward Injection for Cylindrical and Fan-Shaped Holes Using PSP Measurement Technique[R].ASMEGT 2014-26232.
    [17]Prenter R,Hossain M A,Agricola L,et al.Experimental Characterization of Reverse-Oriented Film Cooling[R].ASME GT 2017-64731.
    [18]Singh K,Premachandran B,Ravi M R.Experimental and Numerical Studies on Film Cooling with Reverse/Backward Coolant Injection[J].International Journal of Thermal Sciences,2017,111:390-408.
    [19]YANG,Chengfeng,ZHANG,et al.Influence of Multihole Arrangement on Cooling Film Development[J].中国航空学报(英文版),2012,25(2):182-188.
    [20]胡娅萍,吉洪湖,郑妹,等.孔排布方式对多斜孔壁火焰筒传热特性影响的数值研究[J].推进技术,2013,34(5):638-643.(HU Ya-ping,JI Hong-hu,ZHEN Mei,et al.Numerical Simulation of Effect of Hole Displacement on Heat Transfer Characteristics of an Effusion Cooled Flame Tube[J].Journal of Propulsion Technology,2013,34(5):638-643.)
    [21]王浪,李雪英,任静,等.两排圆孔的气膜冷却特性[J].工程热物理学报,2017,38(5):1082-1086.
    [22]朱惠人,郭涛,许都纯.双排簸箕形孔气膜冷却效率及其叠加算法[J].航空动力学报,2006,21(5):814-819.
    [23]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [24]Liu C L,Zhu H R,Bai J T.Effect of Turbulent Prandtl Number on the Computation of Film-Cooling Effectiveness[J].International Journal of Heat&Mass Transfer,2008,51(25-26):6208-6218.
    [25]Chen A F,Li S J,Han J C.Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique[J].Journal of Thermophysics&Heat Transfer,2015,29(4):1-10.