氢氧化钠刻蚀多孔阳极氧化铝制备氧化铝纳米柱及其疏水性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication of alumina nanopillars via etching porous anodic alumina membranes by NaOH solution and its hydrophobicity
  • 作者:陈新华 ; 马永梅
  • 英文作者:CHEN Xin-hua;MA Yong-mei;College of Chemistry and Chemical Engineering,Xuchang University;Key Laboratory of Green Printing,Institute of Chemistry,Chinese Academy of Sciences;
  • 关键词:多孔氧化铝 ; 化学蚀刻 ; 纳米柱 ; 纳米柱团簇
  • 英文关键词:porous alumina membrane;;chemical etching;;nanopillars;;nanopillar clusters
  • 中文刊名:XDHG
  • 英文刊名:Modern Chemical Industry
  • 机构:许昌学院化学化工学院;中国科学院化学研究所中国科学院绿色印刷重点实验室;
  • 出版日期:2019-01-07 10:49
  • 出版单位:现代化工
  • 年:2019
  • 期:v.39;No.388
  • 基金:国家自然科学基金资助项目(21171143)
  • 语种:中文;
  • 页:XDHG201902027
  • 页数:5
  • CN:02
  • ISSN:11-2172/TQ
  • 分类号:127-130+132
摘要
以多孔阳极氧化铝为原料,用Na OH溶液进行化学腐蚀,控制适当的条件得到氧化铝纳米柱和纳米柱团簇结构。利用扫描电子显微镜对其结构进行观察。结果表明,独立纳米柱直径约100 nm,高约100~250 nm;纳米柱团簇是由直径约100 nm、高约1μm的纳米柱组成,团簇之间间距约1~2μm。该结构的表面和光滑氧化铝表面、多孔阳极氧化铝(纳米孔洞结构)表面分别修饰氟硅烷后,氧化铝纳米柱束团簇结构表面对水的接触角高达155°,比光滑表面(101°)和纳米孔洞结构表面(144°)都要高。
        Alumina nanopillars and nanopillar clusters are fabricated through etching porous anodic alumina membranes by Na OH solution under proper conditions. It is found through field-emission scanning electron microscopy( SEM) that the diameter and height of the single Al2 O3 nanopillar are about 100 nm and 100-250 nm respectively,the nanopillar clusters consist of the nanopillars with a diameter of 100 nm and a height of 1 m,and the distance between the nanopillar clusters is about 1-2 m.After the surfaces of the smooth alumina,the porous alumina membrane( nanochannel structure) and the nanopillar clusters are separately modified by fluoroalkylsilane( FAS),the contact angle to water of the nanopillar clusters surface is as high as 155°,higher than those of the smooth surface( 101°) and the nanochannelstructured surface( 144°).
引文
[1]Zhang Mingqian,Feng Shile,Wang Lei,et al.Lotus effect in wetting and self-cleaning[J].Biotribology,2016,5:31-43.
    [2]Feng Lin,Li Shuhong,Li Yingshun,et al. Super-hydrophobic surfaces:From natural to artificial[J]. Adv Mater,2002,14(24):1857-1860.
    [3]Jiang L,Wang R,Yang B,et al.Binary cooperative complementary nanoscale interfacial materials[J]. Pure Appl Chem,2000,72(1-2):73-81.
    [4]Wang Shutao,Liu Kesong,Yao Xi,et al. Bioinspired surfaces with superwettability:New insight on theory,design,and applications[J].Chem Rev,2015,115(16):8230-8293.
    [5]Sun Taolei,Feng Lin,Gao Xuefeng,et al.Bioinspired surfaces with special wettability[J].Acc Chem Res,2005,38(8):644-652.
    [6]Kang Chao,Lu Houfang,Yuan Shaojun,et al.Superhydrophilicity/superhydrophobicity of nickel micro-arrays fabricated by electroless deposition on an etched porous aluminum template[J]. Chem Eng J,2012,203:1-8.
    [7]Wang Jiadao,Li Ang,Chen Haosheng,et al.Synthesis of biomimetic superhydrophobic surface through electrochemical deposition on porous alumina[J].J Bionic Eng,2011,8(2):122-128.
    [8]Feng Lin,Li Shuhong,Li Huanjun,et al.Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angew Chem,2002,114(7):1269-1271.
    [9]Feng Lin, Song Yanlin, Zhai Jin, et al. Creation of a superhydrophobic surface from an amphiphilic polymer[J]. Angew Chem Int Ed,2003,42(7):800-802.
    [10]丁云飞,武彬,吴会军.基于模板热压法制备超疏水柱状结构表面[J].现代化工,2014,34(11):65-68.
    [11]Peng Shan,Tian Dong,Miao Xinrui,et al.Designing robust alumina nanowires-on-nanopores structures:Superhydrophobic surfaces with slippery or sticky water adhesion[J].J Colloid Interf Sci,2013,409(11):18-24.
    [12]Kim Dae-Ho,Kim Yongsung,Kim Byung Min.Uniform superhydrophobic surfaces using micro/nano complex structures formed spontaneously by a simple and cost-effective nonlithographic process based on anodic aluminum oxide technology[J]. J Micromech Microeng,2011,21(4):045003(8pp).
    [13]Nevin Tasaltin,Deniz Sanli,Alexandr Jonˇs,et al.Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane-modified nanoporous alumina[J]. Nanoscale Res Lett,2011,6(1):487(8pp).
    [14]Lee Wonbae,Park Bo Gi,Kim Dae Hyun,et al.Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces:From highly adhesive to self-cleanable[J].Langmuir,2010,26(3):1412-1415.
    [15]Park Bo Gi,Lee Wonbae,Kim Jung Suk,et al. Superhydrophobic fabrication of anodic aluminum oxide with durable and pitch-controlled nanostructure[J].Physicochem Eng Aspects,2010,370(1-3):15-19.
    [16]Xiao Z L,Han Catherine Y,Welp U,et al.Fabrication of alumina nanotubes and nanaowires by etching porous alumina membranes[J].Nano Lett,2002,2(11):1293-1297.
    [17]Chen Xinhua,Cao Xinyu,Chen Guangming,et al.Fabrication of superhydrophobic surfaces via poly(methyl methacrylate)-modified anodic aluminum oxide membrane[J].J Coat Technol Res,2014,11(5):711-716.
    [18]Chen Xinhua,Chen Guangming,Ma Yongmei,et al.Conductive super-hydrophobic surfaces of polyaniline modified porous anodic alumina membranes[J].J Nanosci Nanotechno,2006,6(3):783-786.
    [19]陈新华,马永梅,李新红,等.微米/纳米结构对氟硅烷修饰氧化铝表面疏水性能的影响[J].高等学校化学学报,2004,25(12):2304-2307.
    [20]Yuan Zhihao,Huang Hua,Fan Shoushan. Regular alumina nanopillar arrays[J].Adv Mater,2002,14(4):303-306.
    [21]Cassie A B D. Contact angles[J]. Dis Faraday Soc,1948,3(5):11-16.