春夏两季连翘光合作用的土壤水分阈值效应及生产力分级
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Threshold Effect of Photosynthesis in Forsythia suspense to Soil Water and its Photosynthetic Productivity Grading in Spring and Summer
  • 作者:郎莹 ; 汪明
  • 英文作者:Lang Ying;Wang Ming;Shandong Provincial Key Laboratory of Water and Soil Conservation & Environmental Protection Institute of Water and Soil Conservation & Environmental Protection,Linyi University;State Key Laboratory of Earth Surface Processes and Resource Ecology Academy of Disaster Reduction and Emergency Management,Beijing Normal University;
  • 关键词:土壤水分阈值 ; 净光合速率 ; 水分利用效率 ; 光合生产力分级 ; 季节
  • 英文关键词:soil water thresholds;;net photosynthetic rate(Pn);;water use efficiency(WUE);;photosynthetic productivity grading;;season
  • 中文刊名:LYKE
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:山东省水土保持与环境保育重点实验室临沂大学水土保持与环境保育研究所;地表过程与资源生态国家重点实验室北京师范大学减灾与应急管理研究院;
  • 出版日期:2016-02-15
  • 出版单位:林业科学
  • 年:2016
  • 期:v.52
  • 基金:国家自然科学基金创新研究群体项目(41321001);; 山东省自然科学基金联合专项(ZR2015CL044)
  • 语种:中文;
  • 页:LYKE201602005
  • 页数:9
  • CN:02
  • ISSN:11-1908/S
  • 分类号:41-49
摘要
【目的】研究春、夏两季连翘叶片光合作用多级土壤水分梯度的响应过程,阐明连翘光合作用的土壤水分阈值效应和生产力分级范围,并进行季节间比较,为春、夏季土壤水分胁迫下连翘的风险诊断和田间植物的土壤水分管理提供科学依据。【方法】以2年生连翘苗木为材料开展温室盆栽试验,通过测定人工给水后植物自然耗水的方法分别获取春季14组和夏季10组土壤水分梯度,利用Li-6400光合作用系统测定2个季节连翘叶片的光合作用光响应过程,并以净光合速率(P_n)和水分利用效率(WUE)分别作为评价土壤水分对连翘的"产"、"效"指标,研究2个季节连翘的土壤水分阈值效应及其生产力分级。【结果】1)当春、夏季土壤相对含水量(RSWC)分别降低至37.5%和46.2%时,随着RSWC继续降低,P_n和WUE显著降低,连翘光合作用的气孔限制转为非气孔限制,P_n和Gs之间由线性正比关系转为非线性正比关系;2)春、夏季P_n,WUE对RSWC的响应过程均可用多项式较好地拟合,由此可确定2个季节连翘的P_n水分补偿点、P_n均值水分点、WUE均值水分点、P_n水分饱和点和WUE水分高效点,借助坐标轴图示,可将土壤水分对连翘的有效性分为无产无效水(春季RSWC≤26.1%,夏季RSWC≤26.4%)、低产低效水(春季RSWC为26.1%~37.5%,夏季RSWC为26.4%~46.2%)、中产中效水(春季RSWC为37.5%~39.5%或80%~100%,夏季RSWC为46.2%~47.8%或95.7%~100%)、高产中效水(夏季RSWC为47.8%~49.2%,83.7%~95.7%)和高产高效水(春季RSWC为39.5%~80.0%,夏季RSWC为49.2%~83.7%);3)夏季土壤水分阈值(水分补偿点除外)均高于春季,有效水分范围(低产低效水、中产中效水、高产中效水、高产高效水)内夏季各级"产-效"水的上限、下限均高于春季,表明连翘对土壤水分含量的要求因生长发育时期不同而异。【结论】植物水分管理中要兼顾生长发育时期的影响,同时为了获得较高的连翘"产"、"效"水平,需维持春季39.5%≤RSWC≤80.0%、夏季49.2%≤RSWC≤83.7%的高产高效水。
        【Objective】Under the influence of global climate change,the Northern China is experiencing more and more severe volatility in soil water contents,which may significantly affect photosynthesis. The objective was to elucidate the threshold effects of photosynthesis in leaves of Forsythia suspense to soil moisture,clarify the threshold range of photosynthetic productivity,and define the regional water adaptability,by investing the photosynthetic responses of F.suspense to different soil water conditions in spring and summer. 【Method 】A potted experiment was carried out in a greenhouse with two-year-old F. suspense seedlings. During the experiment,14 levels of soil water regimes in spring and 10 levels in summer were applied with the artificial water supply and the natural water consumption by plants. At each soil
    water level in both spring and summer,light response of photosynthesis of F. suspensa was measured by using a Li- 6400 portable photosynthesis system. By defining the net photosynthetic rate( P_n) and water use efficiency(WUE) of photosynthesis as the index of plant productivity and soil water efficiency,respectively,key thresholds and the grading of soil water in summer and spring were investigated. 【Result】The results showed that when the relative soil water content( RSWC) decreased to 37. 5% in spring and to 46. 2% in summer,both P_nand WUE showed an obvious decrease with the continuous decreasing of RSWC. At the soil water point,the stomatal limitation changed into non-stomatal limitation in both seasons and the relationship between P_nand stomatal conductance(G_s) was also changed from linear relationship into non-linear relationship as RSWC decreased. All these indicated that when soil water decreased to the turning water point of stomatal mechanism of P_n( RSWC_(SL→nSL)),P_nbegun to decrease seriously as the non-stomatal limitation dominated the decrease of photosynthesis. Thus,we defined RSWC_(SL→nSL)as the lower limit of soil water maintaining high productivity and efficiency in which P_nor WUE would be above the average level. As a result,the soil water point( RSWC_(SL→nSL)) was also one of the key thresholds of soil water. Meanwhile,the processes of P_nand WUE responding to RSWC in spring and summer were both able to be better fitted by polynomial,by which the other soil water thresholds were determined,including the water compensation point of P_n( RSWCP_n point of P water point n= 0),the water saturation( RSWCPn= max),theof average P_n( RSWCPuration point of WUE( RSWC_(n=ave)),the water satWUE = max),and the water point of average WUE( RSWC_(WUE=ave)). RSWCPfined as the lower limit of the low n= 0,RSWC_(SL→nSL),and RSWCPn= ave( or RSWC_(WUE=ave)) were deproductivity or efficiency water,of the middle productivity or efficiency water,and of the high productivity or efficiency water,respectively,we graded the soil water of F. suspensa in both spring and summer into non-productivity and nonefficiency water( NPNEW),low productivity and low efficiency water( LPLEW),middle productivity and low efficiency water( MPMEW),high productivity and middle efficiency water( HPMEW),and high productivity and high efficiency water( HPHEW) using the coordinate graphic figures. In addition,there were differences in the key soil water thresholds or soil water ranges between the two seasons. The RSWCPn= max, RSWCPn= ave,RSWC_(WUE=max), RSWC_(WUE=ave), and RSWC_(SL→nSL)were all higher in summer than in spring. The upper and lower limits of available soil water to plants including LPLEW,MPMEW,HPMEW,HPHEW,were all higher in summer than in spring,indicating that the available soil water mass was different in different periods of plant growth. 【Conclusion 】Thus,the field soil water should be maintained in the range of HPHEW which is from 39. 5% to 80. 0% in spring and from 49. 2% to 83. 7% in summer,in which both P_nand WUE are higher than the average level so that F. suspensa can obtain higher productivity and efficiency. Meanwhile,the soil water thresholds,the water availability ranges,and the periods of plants growth and development should be considered in field water management of plants.
引文
安玉艳,梁宗锁.2012.植物应对干旱胁迫的阶段性策略.应用生态学报,23(10):2907-2915.(An Y Y,Liang Z S.2012.Staged strategy of plants in response t drought stress.Chinese Journal of Applied Ecology,23(10)2907-2915.[in Chinese])
    陈建,张光灿,张淑勇,等.2008.辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程.应用生态学报,19(6)1185-1190.(Chen J,Zhang G C,Zhang S Y,et al.2008.Response processes o Aralia elata photosynthesis and transpiration to light and soi moisture.Chinese Journal of Applied Ecology,19(6):1185-1190.[in Chinese])
    郎莹,汪明.2015.春、夏季土壤水分对连翘光合作用的影响生态学报,35(9):3043-3051.(Lang Y,Wang M.2015.Effects of soil water on photosynthesis o Forsythia suspensa(Thunb.)Vahl.in spring and summer.Act Ecologica Sinica,35(9):3043-3051.[in Chinese])
    郎莹,张光灿,张征坤,等.2011.不同土壤水分下山杏光合作用光响应过程及其模拟.生态学报,31(16):4499-4508.(Lang Y,Zhang G C,Zhang Z K,et al.2011.Light response of photosynthesisand its simulation in leaves of Prunus sibirica L.under different soil water conditions.Acta Ecologica Sinica,31(16):4499-4508.[in Chinese])
    李晓兵,陈云浩,张云霞,等.2002.气候变化对中国北方荒漠草原植被的影响.地球科学进展,17(2):254-261.(Li X B,Chen Y H,Zhang Y X,et al.2002.Impact of climate change on desert steppe in northern China.Advance in Earth Sciences,17(2):254-261.[in Chinese])
    李秧秧.2001.土壤-植物系统水分关系的试验研究.西安:西北农林科技大学博士学位论文.(Li Y Y.2001.The experimental studies on water relations of soil-plant system.Xi’an:Ph D thesis of Northwest A&F University.[in Chinese])
    刘昌明,王会肖.1999.土壤-作物-大气界面水分过程与节水调控.北京:科学出版社.(Liu C M,Wang H X.1999.Water process and water saving regulation of soil-crop-atmosphere interface.Beijing:Science Press.[in Chinese])
    裴斌,张光灿,张淑勇,等.2013.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响.生态学报,33(5):1386-1396.(Pei B,Zhang G G,Zhang S Y,et al.2013.Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn.seedings.Acta Ecologica Sinica,33(5):1386-1396.[in Chinese])
    山仑,徐萌.1991.节水农业及其生理生态基础.应用生态学报,2(1):70-76.(Shan L,Xu M.1991.Water-saving agricul and its physio-ecological bases.Chinese Journal of Applied Ecology,2(1):70-76.[in Chinese])
    沈善敏,卢明远.1964.土壤水分对大豆有效性的初步研究.土壤通报,(2):35-39.(Shen S M,Lu M Y.1964.The preliminary research on effectiveness of soil water on soybean.Chinese Journal of Soil Science,(2):35-39.[in Chinese])
    王长燕,赵景波,李小燕.2006.华北地区气候暖干化的农业适应性对策研究.干旱区地理,29(5):646-652.(Wang C Y,Zhao J B,Li X Y.2006.Study on agricultural adaptation to warming and drying climate in North China.Arid Land Geography,29(5):646-652.[in Chinese])
    魏凤英,张京江.2003.华北地区干旱的气候背景及其前兆强信号.气象学报,61(3):354-363.(Wei F Y,Zhang J J.2003.Climatological background and previous stronger signal of anomaly drought over North China.Acta Meteorologica Sinica,61(3):354-363.[in Chinese])
    魏凤英.2004.华北地区干旱强度的表征形式及其气候变异.自然灾害学报,13(2):32-38.(Wei F Y.2004.Characterization of drought strength in North China and its climatic variation.Journal of Natural Disasters,13(2):32-38.[in Chinese])
    夏江宝,张光灿,孙景宽,等.2011.山杏叶片光合生理参数对土壤水分和光照强度的阈值效应.植物生态学报,35(3):322-329.(Xia J B,Zhang G C,Sun J K,et al.2011.Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity.Chinese Journal of Plant Ecology,35(3):322-329.[in Chinese])
    夏江宝,张淑勇,赵自国,等.2013.贝壳堤岛旱柳光合效率的土壤水分临界效应及其阈值分级.植物生态学报,37(9):851-860.(Xia J B,Zhang S Y,Zhao Z G,et al.2013.Critical effect of photosynthetic efficiency in Salix matsudana to soil moisture and its threshold grade in shell ridge island.Chinese Journal of Plant Ecology,37(9):851-860.[in Chinese])
    许大全.1997.光合作用气孔限制分析中的一些问题.植物生理学通讯,33(4):241-244.(Xu D Q.1997.Some problems in stomatal limitation analysis of photosynthesis.Plant Physiology Communications,33(4):241-244.[in Chinese])
    杨文治,邵明安.2000.黄土高原土壤水分研究.北京:科学出版社.(Yang W Z,Shao M A.2000.Research on soil moisture in loess plateau.Beijing:Science Press.[in Chinese])
    张光灿,刘霞,贺康宁.2003.黄土半干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究.应用生态学报,14(6):858-862.(Zhang G C,Liu X,He K N.2003.Grading of Robinia pseudoacacia and Platycladus orientalis woodland soil’s water availability and productivity in semiarid region of Loess Plateau.Chinese Journal of Applied Ecology,14(6):858-862.[in Chinese])
    张庆云,卫捷,陶诗言.2003.近50年华北干旱的年代际和年际变化及大气环流特征.气候与环境研究.8(3):307-318.(Zhang Q Y,Wei J,Tao S Y.2003.The decadal and interannual variations of drought in the Northern China and association with the circulations.Climatic and Environmental Research,8(3):307-318.[in Chinese])
    张淑勇,夏江宝,张光灿,等.2014.黄刺玫叶片光合生理参数的土壤水分阈值响应及其生产力分级.生态学报,34(10):2519-2528.(Zhang S Y,Xia J B,Zhang G C,et al.2014.Threshold effect of soil moisture on photosynthetic and physiological parameters in Rosa xanthina L.and its photosynthetic productivity classification.Acta Ecologica Sinica,34(10):2519-2528.[in Chinese])
    张淑勇,周泽福,夏江宝,等.2007.不同土壤水分条件下小叶扶芳藤叶片光合作用对光的响应.西北植物学报,27(12):2514-2521.(Zhang S Y,Zhou Z F,Xia J B,et al.2007.The responses of Euonymus fortunei var.radicans Sieb.leaf photosynthesis to light in different soil moisture.Acta Botanica Boreali-Occidentalia Sinica,27(12):2514-2521.[in Chinese])
    Blair G Y,Richards L A,Campbell R B.1950.The rate of elongation of sunflower plants and the freezing point of soil moisture in relation to permanent wilt.Soil Science,70(6):431-440.
    Boyer J S.1982.Plant productivity and environment.Science,218(4571):443-448.
    Chaves M M,Maroco J P,Pereira J S.2003.Understanding plan responses to drought---from genes to the whole plant.Functiona Plant Biology,30(3):239-264.
    Chaves M M,Pereira J S,Maroco J P,et al.2002.How plants cop with water stress in the field?Photosynthesis and growth.Annals o Botany,89(7):907-916.
    Evans J R,Loreto F.2000.Photosynthesis:Acquisition and diffusion o CO2in higher plant leaves.Springer Netherlands,321-351.
    Flexas J,Bota J,Loreto F,et al.2004.Diffusive and metaboli limitations to photosynthesis under drought and salinity in C3 plants Plant Biology,6(3):269-279.
    Lang Y,Wang M,Zhang G C,et al.2013.Experimental and simulated light responses of photosynthesis in leaves of three tree species unde different soil water conditions.Photosynthetica,51(3):370-378
    Law B E,Williams M,Anthoni P M,et al.2000.Measuring and modelling seasonal variation of carbon dioxide and water vapou exchange of a Pinus ponderosa forest subject to soil water deficit Global Change Biology,6(6):613-630.
    Ou L J,Dai X Z,Zhang Z Q,et al.2011.Responses of pepper t waterlogging stress.Photosynthetica,49(3):339-345.
    Quick W P,Chaves M M,Wendler R,et al.1992.The effect of wate stress on photosynthetic carbon metabolism in four species grown under field conditions.Plant,Cell&Environment,15(1)25-35.
    Richards L A,Wadleigh C H.1952.Soil water and plant growth.Soi Physical Conditions and Plant Growth,274-253.
    Smith D M,Cusack S,Colman A W,et al.2007.Improved surfac temperature prediction for the coming decade from a global climat model.Science,317(5839):796-799.
    Suresh K,Nagamani C,Ramachandrudu K,et al.2010.Gas-exchang characteristics,leaf water potential and chlorophyll a fluorescence i oil palm(Elaeis guineensis Jacq.)seedlings under water stress an recovery.Photosynthetica,48(3):430-436.
    Varela S A,Gyenge J E,Fernández M E,et al.2010.Seedling drough stress susceptibility in two deciduous Nothofagus species of NWPatagonia.Trees,24(3):443-453.
    Veihmeyer F J,Hendrickson A H.1927.Soil-moisture conditions i relation to plant growth.Plant Physiology,2(1):71-82.
    Veihmeyer F J,Hendrickson A H.1934.Some plant and soil-moistur relations.Soil Science Society of Americe Journal,15:76-80.
    Wilson K B,Baldocchi D D,Hanson P J.2001.Leaf age affects th seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest.Plant,Cell&Environment,24(6):571-583.
    Zhang G C,Xia J B,Shao H B,et al.2012.Grading woodland soi water productivity and soil bioavailability in the semi-arid loes plateau of china.Clean-Soil,Air,Water,40(2):148-153.