叶轮与导叶叶片数匹配对井用潜水泵性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Matching Number of Blades between Impeller and Diffuser Blade Effect on Performance of Well Submersible Centrifugal Pump
  • 作者:王洪亮 ; 施卫东 ; 杨阳 ; 周岭 ; 陆伟刚
  • 英文作者:WANG Hongliang;SHI Weidong;YANG Yang;ZHOU Ling;LU Weigang;Research Center of Fluid Machinery Engineering and Technology,Jiangsu University;School of Mechanical Engineering,Nantong University;
  • 关键词:井用潜水泵 ; 叶轮 ; 导叶 ; 叶片数 ; 数值模拟
  • 英文关键词:well submersible pump;;impeller;;diffuser;;blade number;;numerical simulation
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:江苏大学流体机械工程技术研究中心;南通大学机械工程学院;
  • 出版日期:2018-06-04 14:13
  • 出版单位:农业机械学报
  • 年:2018
  • 期:v.49
  • 基金:国家自然科学基金项目(51609106);; 江苏省自然科学基金项目(BK20150508);; 江苏高校自然科学研究项目(15KJB570001);; 江苏省博士后科研计划项目(1501069A);; 流体及动力机械教育部重点实验室开放基金项目(szjj2015-023)
  • 语种:中文;
  • 页:NYJX201807013
  • 页数:9
  • CN:07
  • ISSN:11-1964/S
  • 分类号:110-118
摘要
叶轮与导叶叶片数对泵的扬程、效率等都具有较大的影响。选取250QJ140型井用潜水泵作为研究对象,采用数值计算与试验相结合的方法,在叶轮与导叶叶片数组合变化下,对井用潜水泵的性能变化规律和内部流场分布进行了研究。基于不改变其他几何参数的原则,建立16组不同叶片数组合的两级井用潜水泵模型。采用ANSYS ICEM软件对各组模型分别进行了结构化网格划分,进而在ANSYS CFX商用软件中对各组模型进行了多工况定常数值计算。各组数值计算均选用标准k-ω湍流模型和标准壁面函数,获得了各组模型在不同工况下的性能预测值。通过各组方案性能预测值的对比可以发现:在额定流量工况下,当叶轮与导叶叶片数均为7时,井用潜水泵模型的效率最高。在小流量工况和大流量工况下,泵内的介质流动角度发生了变化。在小流量工况下,增加叶轮与导叶的叶片数可以提高叶片对于液体介质的整流,进而提高井用潜水泵性能;在大流量工况下,较少的叶轮与导叶叶片数更能减轻叶片对液体介质的排挤作用。将大流量工况下性能较好的方案6进行了样机制造和性能试验,结果表明,模型性能较好,在额定流量工况下,扬程预测值比试验结果低2.4%,轴功率预测值比试验结果低1.6%,效率预测值比试验结果高1.1%,数值预测结果与试验结果随流量的整体变化趋势一致,证实了本文中数值计算的准确性。
        The number of impeller and diffuser blades has a great influence on the head and efficiency of the pump. The 250 QJ140 type well submersible centrifugal pump was selected as the research object. By the combination of numerical calculation and experiment,under the variation of blade number of impeller and diffuser,the performance variation and internal flow field distribution of submersible pump were analyzed. Based on the principle of not changing other geometric parameters,16 submersible pump models with two different combinations of blades were established. ANSYS ICEM software was used to structure each group of models separately,and then the ANSYS CFX commercial software was used to calculate the multi-working constant of each model. For each set of numerical calculation,standard k-ωturbulence model and standard wall function were selected to obtain the performance prediction values of each model under different operating conditions. Compared the predictions of the performance of each group,it can be found that the efficiency of submersible pump model was the highest when the number of impeller and guide vane was 7 at the rated flow rate. Under the low flow conditions and high flow conditions,the pump medium flow angle was changed. Under low flow conditions,increasing the number of blades of the impeller and guide vanes can improve blade rectification of the liquid medium,therebyimproving the performance of submersible pumps used in wells. In the case of large flow rates,fewer impellers and guide vane blades were more capable of reducing the effect of the blade on the liquid media crowding. Prototype manufacturing and performance test were carried out under the condition of good performance in large flow conditions. The test results showed that the model performance was better.Under the rated flow conditions,the predicted values of head and shaft power were 2. 4% and 1. 6%lower than those of the test result,and the predicted efficiency was 1. 1% higher than that of the test results. The overall changing trend of numerical prediction results and experimental results with the flow was consistent,which confirmed the numerical accuracy of the research.
引文
1施卫东,袁寿其,李世英,等.泵行业存在的主要问题及急需解决的关键技术[J].排灌机械,2001,19(6):7-9.SHI Weidong,YUAN Shouqi,LI Shiying,et al.Main existing problem and key technology to be solved of pump industry in China[J].Drainage and Irrigation Machinery,2001,19(6):7-9.(in Chinese)
    2施卫东,王洪亮,余学军,等.深井泵的研究现状与发展趋势[J].排灌机械,2009,27(1):64-68.SHI Weidong,WANG Hongliang,YU Xuejun,et al.Development and prospect of deep well pump in China[J].Drainage and Irrigation Machinery,2009,27(1):64-68.(in Chinese)
    3陆伟刚,裴冰.新型井用潜水泵技术介绍[J].江苏农机化,2011(4):26-27.LU Weigang,PEI Bing.Technical introduction of new well submersible pump[J].Jiangsu Agricultural Mechanization,2011(4):26-27.(in Chinese)
    4施卫东,杨阳,周岭,等.潜水泵缩比模型的相似性验证与内部流场分析[J].农业工程学报,2017,33(3):50-57.SHI Weidong,YANG Yang,ZHOU Ling,et al.Verification of comparability and analysis of inner flow fields on scaling models of submersible well pump[J].Transactions of the CSAE,2017,33(3):50-57.(in Chinese)
    5周岭,杨阳,施卫东,等.导叶出口边位置对深井离心泵性能的影响[J].排灌机械工程学报,2016,34(12):1028-1034.ZHOU Ling,YANG Yang,SHI Weidong,et al.Influence of outlet edge position of diffuser vane on performance of deep-well centrifugal pump[J].Journal of Drainage and Irrigation Machinery Engineering,2016,34(12):1028-1034.(in Chinese)
    6 ZHOU Ling,SHI Weidong,LI Wei,et al.Numerical and experimental study of axial force and hydraulic performance in a deepwell centrifugal pump with different impeller rear shroud radius[J].Journal of Fluids Engineering,2013,135(10):749-760.
    7陆伟刚,李启锋,施卫东,等.减小叶轮后盖板直径的轴向力试验[J].排灌机械,2008,26(1):1-5.LU Weigang,LI Qifeng,SHI Weidong,et al.Experiment for axial thrust of shortened impeller back shroud[J].Drainage and Irrigation Machinery,2008,26(1):1-5.(in Chinese)
    8 ZHOU Ling,SHI Weidong,BAI Ling,et al.Numerical calculation and experimental study of axial force in a deep-well centrifugal pump[J].Latin American Applied Research,2014,44(1):105-110.
    9刘在伦,许立中,贾晓,等.离心泵浮动叶轮轴向间隙的液体流动分析及轴向力计算[J].农业工程学报,2013,29(12):79-85.LIU Zailun,XU Lizhong,JIA Xiao,et al.Analysis of liquid flow and axial force calculation in axial clearance for floating impeller of centrifugal pump[J].Transactions of the CSAE,2013,29(12):79-85.(in Chinese)
    10李伟,施卫东,蒋小平,等.多级离心泵轴向力的数值计算与试验研究[J].农业工程学报,2012,28(23):52-59.LI Wei,SHI Weidong,JIANG Xiaoping,et al.Numerical calculation and experimental study of axial force on multistage centrifugal pump[J].Transactions of the CSAE,2012,28(23):52-59.(in Chinese)
    11关醒凡.现代泵技术手册[M].北京:宇航出版社,1998.
    12 LIU H,WANG Y,YUAN S,et al.Effects of blade number on characteristics of centrifugal pumps[J].Chinese Journal of Mechanical Engineering,2010,23(6):742-747.
    13张德胜,施卫东,王川,等.斜流泵叶轮和导叶叶片数对压力脉动的影响[J].排灌机械工程学报,2012,30(2):167-170.ZHANG Desheng,SHI Weidong,WANG Chuan,et al.Influence of impeller and guide vane blade number on pressure fluctuation in mixed flow pump[J].Journal of Drainage and Irrigation Machinery Engineering,2012,30(2):167-170.(in Chinese)
    14邴浩,谭磊,曹树良.叶片数及叶片厚度对混流泵性能的影响[J].水力发电学报,2013,32(6):250-255.BING Hao,TAN Lei,CAO Shuliang.Effects of blade number and thickness on performance of mixed-flow pumps[J].Journal of Hydroelectric Engineering,2013,32(6):250-255.(in Chinese)
    15季磊磊,李伟,施卫东,等.叶片数对混流泵内部非定常压力脉动特性的影响[J].排灌机械工程学报,2017,35(8):666-673.JI Leilei,LI Wei,SHI Weidong,et al.Influence of different blade numbers on unsteady pressure pulsations of internal flow field in mixed-flow pump[J].Journal of Drainage and Irrigation Machinery Engineering,2017,35(8):666-673.(in Chinese)
    16杨从新,齐亚楠,黎义斌,等.核主泵叶轮与导叶叶片数匹配规律的数值优化[J].机械工程学报,2015,51(15):53-60.YANG Congxin,QI Ya'nan,LI Yibin,et al.Numerical optimization on blade number matching law of impeller and guide vane in reactor coolant pump[J].Journal of Mechanical Engineering,2015,51(15):53-60.(in Chinese)
    17袁寿其,吴登昊,任芸,等.不同叶片数下管道泵内部流动及振动特性的数值与试验研究[J].机械工程学报,2013,49(20):115-122.YUAN Shouqi,WU Denghao,REN Yun,et al.Numerical and experimental study on flow and vibration characteristics of in-line circulator pumps with different blades numbers[J].Journal of Mechanical Engineering,2013,49(20):115-122.(in Chinese)
    18施卫东,吴苏青,张德胜,等.叶片数对高比转数轴流泵空化特性的影响[J/OL].农业机械学报,2013,44(11):72-77.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20131113&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2013.11.013.SHI Weidong,WU Suqing,ZHANG Desheng,et al.Effects of number of blades on cavitation of high specific speed axial flow pump[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2013,44(11):72-77.(in Chinese)
    19周岭,白玲,杨阳,等.导叶叶片数对井用潜水泵性能的影响[J/OL].农业机械学报,2016,47(10):78-84.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20161011&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2016.10.011.ZHOU Ling,BAI Ling,YANG Yang,et al.Influence of diffuser vane number on submersible well pump performance[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2016,47(10):78-84.(in Chinese)
    20施卫东,张启华,陆伟刚.新型井泵水力设计及内部流动的数值模拟[J].江苏大学学报:自然科学版,2006,27(6):528-531.SHI Weidong,ZHANG Qihua,LU Weigang.Hydraulic design of new-type deep well pump and its flow calculation[J].Journal of Jiangsu University:Natural Science Edition,2006,27(6):528-531.(in Chinese)
    21陆伟刚,张启华,施卫东.深井离心泵叶轮极大直径设计法[J].排灌机械,2006,24(5):1-7.LU Weigang,ZHANG Qihua,SHI Weidong.Impeller diameter maxmium approach for deep well pumps[J].Drainage and Irrigation Machinery,2006,24(5):1-7.(in Chinese)
    22 LU W,ZHOU L,ZHANG D,et al.Unsteady flow numerical analysis of new-type deep well pump under multi-conditions[C]∥ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels,Microchannels,and Minichannels.American Society of Mechanical Engineers,2010:647-652.
    23周岭,施卫东,陆伟刚,等.深井离心泵数值模拟与试验[J].农业机械学报,2011,42(3):69-73.ZHOU Ling,SHI Weidong,LU Weigang,et al.Numerical simulation and experiment on deep-well centrifugal pump[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(3):69-73.(in Chinese)
    24 WANG Chuan,SHI Weidong,WANG Xikun,et al.Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics[J].Applied Energy,2017,187:10-26.
    25 LEE I J,BASNET B,CHUN H J,et al.Development of a sensorless deep well pump multi-function controller using current detection method[J].Transactions of the Korean Institute of Electrical Engineers,2017,66(7):1149-1154.
    26 ZHOU Ling,SHI Weidong,GAO Weidong,et al.CFD investigation and PIV validation of flow field in a compact return diffuser under strong part-load conditions[J].Science China Technological Sciences,2015,58(3):405-414.
    27 MORTAZAVI F,RIASI A,NOURBAKHSH S A.Numerical investigation of back vane design and its impact on pump performance[J].Journal of Fluids Engineering,2017,139(12):121104-121104-9.
    28施卫东,程成,张德胜,等.后掠式双叶片污水泵优化设计与试验[J].农业工程学报,2014,30(18):85-92.SHI Weidong,CHENG Cheng,ZHANG Desheng,et al.Optimal design and experiment of back swept double blades sewage pump[J].Transactions of the CSAE,2014,30(18):85-92.(in Chinese)
    29张永学,陈龙,周鑫,等.高效率离心泵水力设计及BVF诊断[J].排灌机械工程学报,2013,31(6):479-483.ZHANG Yongxue,CHEN Long,ZHOU Xin,et al.Hydraulic design and BVF diagnosis of high efficiency centrifugal pump[J].Journal of Drainage and Irrigation Machinery Engineering,2013,31(6):479-483.(in Chinese)
    30司乔瑞,林刚,袁寿其,等.高效低噪无过载离心泵多目标水力优化设计[J].农业工程学报,2016,32(4):69-77.SI Qiaorui,LIN Gang,YUAN Shouqi,et al.Multi-objective optimization on hydraulic design of non-overload centrifugal pumps with high efficiency and low noise[J].Transactions of the CSAE,2016,32(4):69-77.(in Chinese)
    31谈明高,戴菡葳,刘厚林,等.多级离心泵叶轮时序对振动性能影响的数值研究[J].振动与冲击,2015,34(24):117-122.TAN Minggao,DAI Hanwei,LIU Houlin,et al.Numerical research on the effect of impeller clocking position on vibration of multistage centrifugal pumps[J].Journal of Vibration and Shock,2015,34(24):117-122.(in Chinese)
    32刘梅清,李秋玮,白耀华,等.采用交错布置叶轮的双吸离心泵压力脉动分析[J].工程热物理学报,2010,31(增刊):61-64.LIU Meiqing,LI Qiuwei,BAI Yaohua,et al.Pressure pulsation analysis of a double suction centrifugal pump with staggered arrangement impeller[J].Journal of Engineering Thermophysics,2010,31(Supp.):61-64.(in Chinese)