原子干涉磁力仪信号对比度研究与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Signal contrast research and analysis for atomic interference magnetometer
  • 作者:张笑楠 ; 魏宗康 ; 卢向东 ; 寇军 ; 任章
  • 英文作者:ZHANG Xiaonan;WEI Zongkang;LU Xiangdong;KOU Jun;REN Zhang;School of Automation Science and Electrical Engineering,Beihang University;Beijing Institute of Aerospace Control Instrument;
  • 关键词:原子干涉磁力仪 ; 物理模型 ; 鉴频信号 ; 信号对比度 ; 原子气室温度
  • 英文关键词:atomic interference magnetometer;;physical model;;frequency discrimination signal;;signal contrast;;atomic gas chamber temperature
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:北京航空航天大学自动化科学与电气工程学院;北京航天控制仪器研究所;
  • 出版日期:2018-09-30
  • 出版单位:哈尔滨工业大学学报
  • 年:2018
  • 期:v.50
  • 基金:国家自然科学基金(11204011)
  • 语种:中文;
  • 页:HEBX201809021
  • 页数:5
  • CN:09
  • ISSN:23-1235/T
  • 分类号:142-146
摘要
为了研究基于相干布居俘获原理的原子干涉磁力仪传感系统并对其进行变量控制分析,针对其传感系统建立数学模型以表示输入变量与输出信号间的关系,同时建立鉴频信号对比度关键变量数学模型,对其中影响程度较大的原子气室温度和激光器电流进行信号对比度实验.实验结果表明:鉴频信号的平均对比度在3%左右,与模型计算结果的量级相符,原子气室温度和激光器电流的变化对信号对比度的影响程度符合模型计算结果.实验还同时确定了传感器获得最佳信号对比度时的变量控制范围.
        In order to study the sensor of atomic interference magnetometer based on coherent population trapping principle and analyze its control variables,a mathematical model was proposed to formulate the relationship between system input variables and output signals. A mathematical model of the key variables of frequency discrimination signal contrast was also established and signal contrast experiments were performed to observe the atomic gas chamber temperature and laser input current,which are the key factors in this system. Experimental results showed that the average contrast of frequency discrimination signal was about 3%,which was in agreement with the order of magnitude of the model. The influence of the atomic gas chamber temperature and the laser current on the signal contrast was also in accordance with the results of the model. Moreover,the experiments also determined the range of dynamic operation points for an optimal signal contrast.
引文
[1]李曙光,周翔,曹晓超,等.全光学高灵敏度铷原子磁力仪的研究[J].物理学报,2010,59(2):877.DOI:10.7498/aps.59.877LI Shuguang,ZHOU Xiang,CAO Xiaochao,et al.All-optical high sensitive atomic magnetometer[J].Acta Physica Sinica,2010,59(2):877.DOI:10.7498/aps.59.877
    [2]王丰.激光对铯原子磁力仪灵敏度影响[D].哈尔滨:哈尔滨工程大学,2011WANG Feng.Influence of laser on the sensitivity of cesium atomic magnetometer[D].Harbin:Harbin Engineering University,2011
    [3]张斌.小型化铯光泵原子磁力仪研究[D].杭州:浙江大学,2015ZHANG Bin.Research on miniaturized cesium optically pumped atomic magnetometer[D].Hangzhou:Zhejiang University,2015
    [4]汪之国,罗晖,樊振方,等.极化检测型铷原子磁力仪的研究[J].物理学报,2016,65(21):97.DOI:10.7498/aps.65.210702WANG Zhiguo,LUO Hui,FAN Zhenfang,et al.Research on an pump-probe rubidium magnetometer[J].Acta Physica Sinica,2016,65(21):97.DOI:10.7498/aps.65.210702
    [5]SCHWINDT P D D,KNAPPE S,SHAH V,et al.Chip-scale atomic magnetometer[J].Applied Physics Letter,2004,85(26):6409.DOI:10.1063/1.1839274
    [6]KNAPPE S,SHAH V,SCHWINDT P D D,et al.A microfabricated atomic clock[J].Applied Physics Letters,2004,85(9):1460.DOI:10.1063/1.1787942
    [7]MESCHER M J,LUTWAK R,VARGHESE M.An ultra-low-power physics package for a chip-scale atomic clock[C]//The International Conference on Solid-State Sensors,Actuators and Microsystems.Seoul:IEEE,2005:311.DOI:10.1109/SENSOR.2005.1496419
    [8]ROMISCH S,LUTWAK R.Low-power,4.6-GHz,stable oscillator for CSAC[C]//International Frequency Control Symposium and Exposition.Miami:IEEE,2006:448.DOI:10.1109/FREQ.2006.275427
    [9]SAFFMAN M,OBLAK D,APPEL J,et al.Spin squeezing of atomic ensembles by multi-colour quantum non-demolition measurements[J].Physical Review A,2009,79(2):101.DOI:10.1103/PhysRev A.79.023831
    [10]LUTWAK R,VLITAS P,VARGHESE M,et al.The MAC-a miniature atomic clock[C]//Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition.Vancouver:IEEE,2005:752.DOI:10.1109/FREQ.2005.1574029
    [11]ZHANG Jian,Ning Yongqiang,ZENG Yuguang,et al.Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks[J].Laser Physics Letters,2013,10(4):45802.DOI:10.1088/1612-2011/10/4/045802
    [12]AL-SAMANEH A,SANAYEH M B,RENZ S,et al.Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications[J].IEEE Photonics Technology Letters,2011,23(15):1049.DOI:10.1109/LPT.2011.2151853
    [13]翟造成,杨佩红.第三代卫星导航定位系统星载原子钟的新发展[J].天文学进展,2008,26(4):301.DOI:10.3969/j.issn.1000-8349.2008.04.001ZHAI Zaocheng,YANG Peihong.The new creations and development of on-board atomic clocks for the 3rd generation of GNSS[J].Progress in Astronomy,2008,26(4):301.DOI:10.3969/j.issn.1000-8349.2008.04.001
    [14]王义遒.量子频标原理[M].北京:科学出版社,1986:241WANG Yiqiu.Principle of quantum frequency[M].Beijing:Science Press,1986:241
    [15]DENATALE J F,BORWICK R L,TSAI C,et al.Compact,lowpower chip-scale atomic clock[C]//2008 IEEE/ION Position,Location and Navigation Symposium.Monterey:IEEE,2008:67.DOI:10.1109/PLANS.2008.4570007