淮南煤田太原组铝质泥岩元素地球化学特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The elemental geochemical characteristics of aluminous argillites in Taiyuan Formation from Huainan coalfield
  • 作者:陈冰宇 ; 刘桂建 ; 吴盾 ; 孙若愚
  • 英文作者:CHEN Bingyu;LIU Guijian;WU Dun;SUN Ruoyu;School of Earth and Space Sciences, Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Chinese Academy of Sciences;Exploration Research Institute,Anhui Provincial Bureau of Coal Geology;Institute of Surface-Earth System Science, Tianjin University;
  • 关键词:铝质泥岩 ; 地球化学特征 ; 主量元素 ; 微量元素 ; 晚石炭世–早二叠世太原组 ; 淮南煤田
  • 英文关键词:aluminous argillites;;geochemical characteristics;;major elements;;trace elements;;the Late Carboniferous to Early Permian Taiyuan Formation;;Huainan coalfield
  • 中文刊名:MDKT
  • 英文刊名:Coal Geology & Exploration
  • 机构:中国科学院壳幔物质与环境重点实验室中国科学技术大学地球和空间科学学院;安徽省煤田地质局勘查研究院;天津大学表层地球系统科学研究院;
  • 出版日期:2018-06-25
  • 出版单位:煤田地质与勘探
  • 年:2018
  • 期:v.46;No.267
  • 基金:国家重点基础研究发展计划“973计划”课题(2014CB238903);; 国家自然科学基金项目(41672144)~~
  • 语种:中文;
  • 页:MDKT201803005
  • 页数:7
  • CN:03
  • ISSN:61-1155/P
  • 分类号:24-30
摘要
华北聚煤盆地南缘淮南煤田晚石炭世–早二叠世太原组含煤岩系普遍沉积铝质泥岩,然而,对于多层铝质泥岩的形成条件及其地球化学特征尚未开展深入研究。在本次研究中,系统采集了淮南煤田张集煤矿补Y1钻孔岩心样品,采用XRF和ICP-OES、ICP-MS分别测试了主量元素和微量元素,对铝质泥岩地球化学特征及其地质成因进行分析。结果表明:不同层位的铝质泥岩来源于同一源区,铝土质泥岩可能受到了更强烈的红土化作用导致其明显偏离SiO_2/Al_2O_3和Fe_2O_3/Al_2O_3趋势线;Sr/Ba的结果表明铝质泥岩是在不稳定的海陆交互沉积环境下形成的,V/Cr和V/(V+Ni)的结果表明铝质泥岩是在贫氧到厌氧的沉积环境中形成的;综合主量元素和微量元素的结果,表明了不同层位铝质泥岩的母岩可能是附近古陆的中酸性火成岩,母岩风化产物经迁移至淮南地区沉积成岩。
        Aluminous argillites are widely deposited in the Late Carboniferous to Early Permian Taiyuan Formation of Huainan coalfield at the southeast margin of the North China Plate. However, knowledge about their formation conditions and geochemical characterizations are not presently known. We collected samples from a borehole in Zhangji coal mine and tested their geochemical parameters, including major and trace elements, by XRF and ICP-OES and ICP-MS, respectively. The geochemical characteristics and geological origin of Huainan aluminous argillites were investigated. Results show that: nearly all the argillites have comparable ratios of SiO_2/Al_2O_3 and Fe_2O_3/Al_2O_3, suggesting that they were possibly derived from the same source materials, however, bauxitic argillites significantly deviate from the correlation slopes, indicating that they probably suffered a more extensive laterization than aluminous argillites; the Sr/Ba ratios of the studied argillite samples were possibly deposited in an unstable paleodepositional environment, while the V/Cr and V/(V+Ni) ratios suggested an anoxic environment; based on the comprehensive consideration of major and trace element results, the studied aluminous argillites probably derived from the common parent rocks composed of felsic to intermediate igneous rocks. These argillites were presumably deposited under anoxic environments in Huainan area.
引文
[1]陈健,陈萍,刘文中,等.煤系共伴生资源利用现状及两淮煤田前景分析[J].洁净煤技术,2015,21(6):105–108.CHEN Jian,CHEN Ping,LIU Wenzhong,et al.Utilization of associated resources occurred in Chinese coal-bearing series and its prospects in Huainan and Huaibei coalfields[J].Clean Coal Technology,2015,21(6):105–108.
    [2]赵世煌,宋焕霞,赵桂军,等.煤炭勘查实物地质资料的二次开发——以陕西府谷海则庙与段寨矿区高山岭土矿勘查为例[J].中国煤炭地质,2015,27(7):74–76.ZHAO Shihuang,SONG Huanxia,ZHAO Guijun,et al.Further utilization of material geological data in coal exploration:A case study of Haizemiao and Duanzhai mine areas kaolin exploration in Fugu,Shaanxi[J].Coal Geology of China,2015,27(7):74–76.
    [3]王有智.珲春盆地低煤阶煤层气富集规律[J].煤田地质与勘探,2015,43(3):28–32.WANG Youzhi.Low rank enrichment of coalbed methane in Hunchun basin[J].Coal Geology&Exploration,2015,43(3):28–32.
    [4]赵师庆,王飞宇.镜质组反射率的抑制效应及富氢镜质体的形成模式[J].淮南矿业学院学报,1990,10(3):1–11.ZHAO Shiqing,WANG Feiyu.Suppression of vitrinite reflectance and origin model for perhydrous vitrinite[J].Journal of Huainan Mining Institute,1990,10(3):1–11.
    [5]赵师庆,王飞宇,傅家谟.不同还原性腐殖煤及其镜质组生烃潜力的研究[J].煤炭学报,1992,17(4):101–110.ZHAO Shiqing,WANG Feiyu,FU Jiamo.Study of hydrocarbon-generating potential of different types of reducing humic coal and its vitrinites[J].Journal of China Coal Society,1992,17(4):101–110.
    [6]TAYLOR S R,MCLENNAN S M.The geochemical evolution of the continental crust[J].Reviews of Geophysics,1995,33:241–265.
    [7]HAYASHI K I,FUJISAWA H,HOLLAND H D,et al.Geochemistry of~1.9 Ga sedimentary rocks from northeastern Labrador,Canada[J].Geochimica et Cosmochimica Acta,1997,61:4115–4137.
    [8]DOBRZINSKI N,BAHLBURG H,STRAUSS H,et al.Geochemical climate proxies applied to the Neoproterozoic glacial succession on the Yangtze Plateform,South China[J].The Extreme Proterozoic:Geology,Geochemistry,and Climate,2004:13–32.
    [9]EL–BIALY M Z.Geochemistry of the Neoproterozoic metasediments of Malhaq and Um Zariq Formations,Kid metamorphic complex,Sinai,Egypt:Implications for source-area weathering,provenance,recycling,and depositional tectonic setting[J].Lithos,2013,175:68–85.
    [10]MCLENNAN S M.Weathering and global denudation[J].The Journal of Geology,1993,101:295–303.
    [11]ZIMMERMANN U,BAHLBURG H.Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna basin,NW Argentina[J].Sedimentology,2003,50:1079–1104.
    [12]ARMSTRONG-ALTRIN J S,LEE Y I,VERMA S P,et al.Geochemistry of sandstones from the upper Miocene Kudankulam Formation,southern India:Implications for provenance,weathering,and tectonic setting[J].Journal of Sedimentary Research,2004,74:285–297.
    [13]WANG X,JIAO Y,DU Y,et al.REE mobility and Ceanomaly in bauxite deposit of WZD area,northern Guizhou,China[J].Journal of Geochemical Exploration,2013,133:103–117.
    [14]刘长龄.中国铝土矿的成因类型[J].中国科学B辑,1987,17(5):535–544.LIU Changling.The genetic typer of China bauxite[J].Science in China(Series B),1987,17(5):535–544.
    [15]AMAJOR L C.Major and trace elements geochemistry of Albin and Turonian shales from the southern Benue trough,Nigeria[J].Journal of Africa Earth Sciences,1987,6:633–641.
    [16]IMCHEN W,THONG G T,PONGEN T.Provenance,tectonic setting and age of the sediments of the Upper Disang Formation in the Phek District,Nagaland[J].Journal of Asian Earth Sciences,2014,88:11–27.
    [17]FEDO C M,NESBITT H M,YOUNG G M.Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance[J].Geology,1995,23:921–924.
    [18]BABECHUK M G,WIDDOWSON M,KAMBER B S.Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles,Deccan Traps,India[J].Chemical Geology,2014,263:56–75.
    [19]SUTTNER L J,DUTTA P K.Alluvial sandstone composition and paleoclimate,I.Framework mineralogy[J].Journal of Sedimentary Research,1986,56:329–345.
    [20]NESBITT H W,YOUNG G M.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature,1982,299:715–717.
    [21]SCHELLMANN W.Considerations on the definition and classification of laterites:A critique of the Schellmann definition and classification of laterite[J].Catena,1981,47:117–131.
    [22]SCHELLMANN W.A new definition of laterite[M].Kolkata:Memoirs of the Geological Survey of India,1986.
    [23]FRANCOIS R.A study on the regulation of the concentrations of some trace metals(Rb,Sr,Zn,Pb,Cu,V,Cr,Ni,Mn and Mo)in Saanich Inlet sediments,British Columbia,Canada[J].Marine Geology,1988,83:285–308.
    [24]VAN OS B J,MIDDELBURG J J,DE LANGE G J.Possible diagenetic mobilization of barium in sapropelic sediments from the eastern Mediterranean[J].Marine Geology,1991,100:125–136.
    [25]RAISWELL R,BUCKLEY F,BERNER R A,et al.Degree of pyritisation of iron as a paleoenvironmental indicator of bottom-water oxygenation[J].Journal of Sedimentary Research,1988,58:812–819.
    [26]CALVERT S E,PEDERSEN T F.Geochemistry of recent oxic and anoxic marine sediments:Implications for the geological record[J].Marine Geology,1993,113:67–88.
    [27]JONES B,MANNING D A.Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J].Chemical Geology,1994,111:111–129.
    [28]TRIBOVILLARD N,ALGEO T J,LYONS T,et al.Trace metals as paleoredox and paleoproductivity proxies:An update[J].Chemical Geology,2006,232:12–32.