生物炭对杉木人工林土壤养分、酶活性及细菌性质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of biochar on soil nutrient, enzyme activity, and bacterial properties of Chinese fir plantation
  • 作者:胡华英 ; 殷丹阳 ; 曹升 ; 张虹 ; 周垂帆 ; 何宗明
  • 英文作者:HU Huaying;YIN Danyang;CAO Sheng;ZHANG Hong;ZHOU Chuifan;HE Zongming;College of Forestry, Fujian Agriculture and Forestry University;State Forestry Administration Engineering Research Center of Chinese fir;National Positioning Observation and Research Station of Red Soil Hill Ecosystem in Changting;
  • 关键词:生物炭 ; 土壤细菌 ; 酶活性 ; 相关性
  • 英文关键词:biochar;;soil bacteria;;enzyme activity;;correlation
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建农林大学林学院;国家林业和草原局杉木工程研究中心;福建长汀红壤丘陵生态系统国家定位观测研究站;
  • 出版日期:2019-06-08
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:福建省科技重大专项(2018NZ0001-1);; 国家自然科学基金项目(31400465);; 福建农林大学科技创新专项基金项目(CXZX2018136)
  • 语种:中文;
  • 页:STXB201911033
  • 页数:11
  • CN:11
  • ISSN:11-2031/Q
  • 分类号:345-355
摘要
为了探究添加生物炭对南方红壤杉木人工林土壤养分含量、酶活性及细菌丰度和群落结构及多样性的影响,分析三者之间的作用机制,基于高通量测序技术,通过添加不同生物炭对人工杉木林土壤环境中细菌群落进行培养和测定,同时挑选与土壤C、N循环相关的4种酶,分析4种酶与土壤养分含量及土壤细菌相对丰度的关系。结果表明:添加生物炭总体使得土壤pH值,全磷、有效磷、速效钾等含量有所提高,同时促进土壤-α-葡萄糖苷酶、土壤-β-葡萄糖苷酶及脲酶的活性,对过氧化氢酶的影响不显著;由于生物炭制备原料不同,其自身性质和物质含量也存在差异,因此杉叶炭对土壤养分的提高量大于木屑炭,而木屑炭处理的土壤全碳含量高于杉叶炭;低添加量生物炭对参与碳循环的土壤葡萄糖苷酶活性提高程度大于高添加量生物炭,而与氮循环有关的土壤脲酶活性随着生物炭添加量的增加而提高,尤其3%BL600处理对土壤脲酶影响十分显著;向土壤添加杉叶炭能够提高土壤细菌丰度,而木屑炭降低了土壤细菌丰度,低温炭大于高温炭;添加生物炭对土壤pH值,全碳、全磷、有效磷、速效钾含量等具有直接影响,土壤组分和性质对不同细菌种群生活习性与功能产生不同的影响,土壤酶活性与土壤细菌存在密切的联系,细菌丰度的变化又会引起土壤酶活性的改变,因此土壤酶活性和细菌群落相对丰度对添加生物炭的响应存在一定的相关关系。
        This paper aims to explore the interaction mechanism of the soil properties and nutrient contents, enzyme activity of the soil, and the abundance and activity of soil bacterial community structure and diversity, and impact analysis of three in Chinese fir plantation′s red soil in southern China after biochars application. We cultivated and determined bacterial community in soil environment of the artificial Chinese fir forest by adding different biochars based on high-throughput sequencing technology. Four enzymes related to soil C and N cycling were selected to analyze the relationship between the four enzymes and the soil nutrient content and relative abundance of the soil bacteria. The results showed that the biochar application improved the soil pH, total phosphorus, available phosphorus, available potassium, and promoted the activities of soil-α-glucosidase, soil-β-glucosidase and urease, but had no significant effect on catalase. The increase of the Chinese fir leaf biochar was greater than fir wood chip biochar, while the total carbon content of soil with fir wood chip biochar was higher than that of the Chinese fir leaf biochar because the raw materials for biochar preparation and its own properties and substance content were different. The activity of C cycle soil-glucosidase increased more with low addition of biochar than with high addition of biochar, while the soil urease activity related to the N cycle increased with the increase of the biochar addition, especially 3% BL600 treatment had a significant effect on soil urease. Adding cedar leaf charcoal to soil could increase the soil bacterial abundance, while wood charcoal reduced the soil bacterial abundance, and low temperature charcoal was higher than high temperature charcoal. Adding biochar had direct influence on the soil pH value, total carbon, total phosphorus, available phosphorus and available potassium content. The soil composition and properties had different effects on the living habits and functions of different bacterial populations. The soil enzyme activities were closely related to soil bacteria. The changes in bacterial abundance caused changes in the soil enzyme activities. Therefore, the soil enzyme activities and bacterial communities relative abundance had a certain correlation with the response to the addition of biochar.
引文
[1] 秦国宣,方晰,田大伦,徐桂林.湖南会同第2代杉木人工林地土壤酶活性.中南林业科技大学学报,2008,28(2):1-7.
    [2] 夏丽丹,于姣妲,邓玲玲,李小艳,周垂帆,徐永兴.杉木人工林地力衰退研究进展.世界林业研究,2018,31(2):37-42.
    [3] Liu X H,Han F P,Zhang X C.Effect of biochar on soil aggregates in the loess plateau:results from incubation experiments.International Journal of Agriculture & Biology,2012,14(6):975-979.
    [4] Ameloot N,Graber E R,Verheijen F G A,De Neve S.Interactions between biochar stability and soil organisms:review and research needs.European Journal of Soil Science,2013,64(4):379-390.
    [5] Oleszczuk P,Jo■ S,Pa?ys E,Kraska P.Effect of pesticides on microorganisms,enzymatic activity and plant in biochar-amended soil.Geoderma,2014,214-215:10-18.
    [6] Lehmann J,Rillig M C,Thies J,Masiello C A,Hockaday W C,Crowley D.Biochar effects on soil biota – A review.Soil Biology and Biochemistry,2011,43(9):1812-1836.
    [7] Yang Y N,Sheng G Y.Pesticide adsorptivity of aged particulate matter arising from crop residue burns.Journal of Agricultural and Food Chemistry,2003,51(17):5047-5051.
    [8] 邹春娇,张勇勇,张一鸣,郭小鸥,李明静,李天来.生物炭对设施连作黄瓜根域基质酶活性和微生物的调节.应用生态学报,2015,26(6):1772-1778.
    [9] Xie Z B,Xu Y P,Liu G,Liu Q,Zhu J G,Tu C,Amonette J E,Cadisch G,Yong J W H,Hu S J.Impact of biochar application on nitrogen nutrition of rice,greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China.Plant and Soil,2013,370(1/2):527-540.
    [10] 李莹,魏志超,李惠通,邱云霄,周垂帆,马祥庆.生物炭对杉木人工林土壤碳氮矿化的影响.农业环境科学学报,2017,36(2):314-321.
    [11] Li Y,Zhou C,Qiu Y,Tigabu M,Ma X.Effects of biochar and litter on carbon and nitrogen mineralization and soil microbial community structure in a China fir plantation.Journal of Forestry Research,2018,1-11.
    [12] 关松荫.土壤酶及其研究法.北京:农业出版社,1986.
    [13] 杨兰芳,曾巧,李海波,闫静静.紫外分光光度法测定土壤过氧化氢酶活性.土壤通报,2011,42(1):207-210.
    [14] Caporaso J G,Kuczynski J,Stombaugh J,Bittinger K,Bushman F D,Costello E K,Fierer N,Peňa A G,Goodrich J K,Gordon J I,Huttley G A,Kelley S T,Knights D,Koenig J E,Ley R E,Lozupone C A,McDonald D,Muegge B D,Pirrung M,Reeder J,Sevinsky J R,Turnbaugh P J,Walters W A,Widmann J,Yatsunenko T,Zaneveld J,Knight R.QIIME allows analysis of high-throughput community sequencing data.Nature Methods,2010,7(5):335-336.
    [15] Edgar R C,Haas B J,Clemente J C,Quince C,Knight R.UCHIME improves sensitivity and speed of chimera detection.Bioinformatics,2011,27(16):2194-2200.
    [16] Haas B J,Gevers D,Earl A M,Feldgarden M,Ward D V,Giannoukos G,Ciulla D,Tabbaa D,Highlander S K,Sodergren E,Methé B,DeSantis T Z,The Human Microbiome Consortium,Petrosino J F,Knight R,Birren B W.Chimeric 16S rRNA sequence formation and detection in sanger and 454-pyrosequenced PCR amplicons.Genome Research,2011,21(3):494-504.
    [17] Novak J M,Lima I,Xing B S,Gaskin J W,Steiner C,Das K C,Ahmedna M,Rehrah D,Watts D W,Busscher W J,Schomberg H.Characterization of designer biochar produced at different temperatures and their effects on a loamy sand.Annals of Environmental Science,2009,3:195-206.
    [18] Van Zwieten L,Kimber S,Morris S,Chan K Y,Downie A,Rust J,Joseph S,Cowie A.Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility.Plant and Soil,2010,327(1/2):235-246.
    [19] Manyà J J.Pyrolysis for biochar purposes:a review to establish current knowledge gaps and research needs.Environmental Science & Technology,2012,46(15):7939-7954.
    [20] Wang X B,Song D L,Liang G Q,Zhang Q,Ai C,Zhou W.Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil.Applied Soil Ecology,2015,96:265-272.
    [21] 冯爱青,张民,李成亮,杨越超,陈宝成.秸秆及秸秆黑炭对小麦养分吸收及棕壤酶活性的影响.生态学报,2015,35(15):5269-5277.
    [22] Elzobair K A,Stromberger M E,Ippolito J A,Lentz R D.Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol.Chemosphere,2016,142:145-152.
    [23] Liao N,Li Q,Zhang W,Zhou G W,Ma L J,Min W,Ye J,Hou Z A.Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil.European Journal of Soil Biology,2016,72:27-34.
    [24] Dempster D N,Gleeson D B,Solaiman Z M,Jones D L,Murphy D V.Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil.Plant and Soil,2012,354(1/2):311-324.
    [25] Zhang P,Sun H W,Min L J,Ren C.Biochars change the sorption and degradation of thiacloprid in soil:insights into chemical and biological mechanisms.Environmental Pollution,2018,236:158-167.
    [26] 刘善江,夏雪,陈桂梅,卯丹,车升国,李亚星.土壤酶的研究进展.中国农学通报,2011,27(21):1-7.