芯片表面的冷极性分子静电阱与微阱阵列
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrostatic Trap and Microtrap Arrays for Cold Polar Molecules on a Chip Surface
  • 作者:吴言 ; 刘思琪 ; 李胜强
  • 英文作者:WU Yan;LIU Siqi;LI Shengqiang;School of New Energy and Electronic Engineering, Yancheng Teachers University;
  • 关键词:冷极性分子 ; 静电表面阱 ; 微阱阵列 ; 蒙特卡罗(Monte ; Carlo)模拟
  • 英文关键词:cold polar molecules;;electrostatic surface trap;;microtrap array;;Monte Carlo simulation
  • 中文刊名:JSWL
  • 英文刊名:Chinese Journal of Computational Physics
  • 机构:盐城师范学院新能源与电子工程学院;
  • 出版日期:2018-06-04 17:14
  • 出版单位:计算物理
  • 年:2019
  • 期:v.36;No.188
  • 基金:国家自然科学基金青年科学基金(11504318);; 江苏省大学生创新创业项目(201710324001Y)资助
  • 语种:中文;
  • 页:JSWL201904013
  • 页数:8
  • CN:04
  • ISSN:11-2011/O4
  • 分类号:109-116
摘要
提出一种利用三根载荷金属杆来实现在芯片表面陷俘冷极性分子的静电阱.给出空间静电场等高线分布.通过调节电极电压操控阱中心距离芯片表面的高度.用经典的蒙特卡罗方法模拟冷分子被装载和囚禁的动力学过程.方案对中心速度为11 m·s~(-1)的冷分子束,最大装载效率可以达到40%,阱中分子的温度大约为25 mK.方案可以进一步微型化、集成化,形成一维和二维静电微阱阵列,在量子计算、低维物理等方面有应用价值.
        An electrostatic surface trap for cold polar molecules with three charged poles is proposed. Distance between trap center and chip surface can be manipulated conveniently by altering voltages applied to the poles. Dynamic process of loading and trapping is simulated with classic method of Monte Carlo. It indicates that a loading efficiency of 40% for ND_3 molecular beam with middle velocity of 11 m·s~(-1) is reached. Corresponding temperature of trapped molecules is about 25 mK. Our scheme can be further miniaturized and integrated to form one-dimensional and two-dimensional microtrap arrays which can be used in quantum computing and low-dimensional physics research.
引文
[1] PRITCHARD D E.Cooling neutral atoms in a magnetic trap for precision spectroscopy[J].Physical Review Letters,1983,51(15):1336-1339.
    [2] WEINSTEIN J D,LIBBRECHT K G.Microscopic magnetic traps for neutral atoms[J].Physical Review A,1995,52(5):4004-4009.
    [3] DRNDIC M,JOHNSON K S,THYWISSEN J H,et al.Micro-electromagnets for atom manipulation[J].Applied Physics Letters,1998,72(22):2906-2908.
    [4] REICHEL J,HANSEL W,HANSCH T W.Atomic micromanipulation with magnetic surface traps[J].Physical Review Letters,1999,83(17):3398-3401.
    [5] HU J,YIN J P.Controllable double-well magnetic traps for neutral atoms[J].Journal of the Optical Society of America B,2002,19(12):2844-2851.
    [6] CHU S,BJORKHOLM J E,ASHKIN A,et al.Experimental observation of optically trapped atoms[J].Physical Review Letters,1986,57(3),314-317.
    [7] BIRKL G,BUCHKREMER F B J,DUMKE R,et al.Atom optics with microfabricated optical elements[J].Optics Communications,2001,191:67-81.
    [8] YIN J P,GAO W J,WANG H F,et al.Generation of dark hollow beams and their application in laser cooling of atoms and all optical-type Bose-Einstein condensation [J].Chinese Physics,2002,11(11):1157-1169.
    [9] OVCHINNIKOV Y B,MANEK I,GRIMM R.Surface trap for Cs atoms based on evanescent-wave cooling[J].Physical Review Letters,1997,79(12):2225-2228.
    [10] 沐仁旺,纪宪明,印建平.一种实现冷原子(或冷分子)囚禁的可操控纵向光学双阱[J].物理学报,2006,55(4):1740-1750.
    [11] HU J,YIN J P.Double-well surface magneto-optical traps for neutral atoms in a vapor cell[J].Journal of the Optical Society of America B,2005,22(5):937-942.
    [12] YUN M,YIN J P.Controllable double-well magneto-optical atom trap with a circular current-carrying wire[J].Optics Letters,2005,30(7):696-698.
    [13] THYWISSENA J H,OLSHANII M,ZABOW G,et al.Microfabricated magnetic waveguides for neutral atoms[J].The European Physical Journal D,1999,7:361-367.
    [14] DEKKER N H,LEE C S,LORENT V,et al.Guiding neutral atoms on a chip[J].Physical Review Letters,2000,84(6):1124-1127.
    [15] LIU N C,YIN J P.Magnetic guide of cold atoms using a U-shaped current-carrying conductor[J].Chinese Physics,2003,12(9):955-963.
    [16] PRUVOST L,MARESCAUX D,HOUDE O,et al.Guiding and cooling of cold atoms in a dipole guide[J].Optics Communications,1999,166:199-209.
    [17] JI X M,XIA Y,YIN J P.Generation of one-dimensional array of focused hollow-beam pipes and its surface microscopic waveguide for cold atoms or molecules[J].Chinese Physics Letters,2004,21(7):1272-1275.
    [18] CASSETTARI D,CHENET A,FOLMANL R,et al.Micromanipulation of neutral atoms with nanofabricated structures[J].Applied Physics B,2000,70:721-730.
    [19] CASSETTARI D,HESSMO B,FOLMAN R,et al.Beam splitter for guided atom[J].Physical Review Letters,2000,85(26):5483-5486.
    [20] HINDS E A,VALE C J,BOSHIER G.Two-wire waveguide and interferometer for cold atoms[J].Physical Review Letters,2001,86(8):1462-1465.
    [21] DUMKE R,MUTHER T,VOLK M,et al.Interferometer-type structures for guided atoms[J].Physical Review Letters,2002,89(22):220402.
    [22] 纪宪明,印建平.一种新颖的表面光波导型原子(或分子)分束器[J].物理学报,2005,54(10):4659-4665.
    [23] MULLER D,CORNELL E A,PREVEDELLI M,et al.Magnetic switch for integrated atom optics[J].Physics Review A,2001,63(4):041602.
    [24] LIU N C,GAO W J,YIN J P.Magnetic guiding of cold neutral atoms using a V-shaped current-carrying conductor[J].The European Physical Journal D,2002,19:137-145.
    [25] TREUTLEIN P,HUNGER D,CAMERER S,et al.Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip[J].Physics Review Letters,2007,99(14):140403
    [26] DAS K K,AUBIN S.Quantum pumping with ultracold atoms on microchips:Fermions versus Bosons[J].Physics Review Letters,2009,103(12):123007.
    [27] PURDY T P,BROOKS D W C,BOTTER T,et al.Tunable cavity optomechanics with ultracold atoms[J].Physics Review Letters,2010,105(13):133602.
    [28] LUKIN M D,FLEISCHHAUER M,COTE R.Dipole blockade and quantum information processing in mesoscopic atomic ensembles[J].Physics Review Letters,2001,87(3):037901.
    [29] JAKSCH D,CIRAC J I,ZOLLER P.Fast quantum gates for neutral atoms[J].Physics Review Letters,2000,85(10):2208-2211.
    [30] XIA Y,YIN Y L,CHEN H B,et al.Electrostatic surface guiding for cold polar molecules:Experimental demonstration[J].Physics Review Letters,2008,100(4):043003.
    [31] MEEK S A,CONRAD H,MEIJER G.A Stark decelerator on a chip[J].New Journal of Physics,2009,11:055024.
    [32] DENG L Z,LIANG Y,GU Z X,et al.Experimental demonstration of a controllable electrostatic molecular beam splitter[J].Physics Review Letters,2011,106(14):140401.
    [33] LI S Q,XU L,DENG L Z,YIN J P.Controllable electrostatic surface storage ring with opened optical access for cold polar molecules on a chip[J].Journal of the Optical Society of America B,2014,31(1):110-119.
    [34] SCHULZ S A,BETHLEM H L,VAN V J,et al.Microstructured switchable mirror for polar molecules[J].Physics Review Letters,2004,93(2):020406.
    [35] MEEK S A,CONARD H,MEIJER G.Trapping molecules on a chip[J].Science,2009,324(5935):1699-1702.
    [36] LI S Q,XU L,XIA Y,WANG H L,YIN J P.Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap[J].Chinese Physics B,2014,23:123701.
    [37] WANG Q,LI S Q,HOU S Y,et al.Electrostatic surface trap for cold polar molecules on a chip[J].Chinese Physics B,2014,23(1):013701.
    [38] LI S Q.A controllable electrostatic well for cold polar molecules in weak field seeking state on a chip[J].Chinese Journal of Computational Physics,2017,34(6):731-739.
    [39] LONG G B,ZHENG Y G,OU J W,et al.Monte Carlo simulation for inverse Compton scattering[J].Chinese Journal of Computational Physics,2016,33(2):136-146.
    [40] ZHANG Yanjun,WANG Chao,YE Wenjiang,ZHANG Zhidong.Monte Carlo simulation of nematic droplets with modified Gruhn-Hess pair potential[J].Chinese Journal of Computational Physics,2013,30(2):244-250.
    [41] VELDHOVEN J,BETHLEM H L,SCHNELL M,MEIJER G.Versatile electrostatic trap[J].Physical Review A,2006,73(6):063408(7).
    [42] HOU S Y,WANG Q,DENG L Z,YIN J P.Controllable surface electrostatic velocity filter for polar molecules[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2013,46(14):145303(8).