星间高速激光通信解调器并行结构设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Parallel structure design of inter-satellite high-speed laser communication demodulator
  • 作者:郭琦康 ; 李国通 ; 张军 ; 冯磊
  • 英文作者:GUO Qi-kang;LI Guo-tong;ZHANG Jun;FENG Lei;Shanghai Institute of Microsyst & Information Technology,Chinese Academy of Sciences;Shanghai Engineering Center for Microsatellites;Shanghai Tech University,School of Information Science & Technology;University of Chinese Academy of Sciences;
  • 关键词:星间激光 ; 高速解器调 ; 频域 ; 并行结构
  • 英文关键词:inter-satellite laser;;high-speed demodulator;;frequency-domain;;parallel structure
  • 中文刊名:GWDZ
  • 英文刊名:Electronic Design Engineering
  • 机构:中国科学院上海微系统与信息技术研究所;上海微小卫星工程中心;上海科技大学信息学院;中国科学院大学;
  • 出版日期:2018-10-20
  • 出版单位:电子设计工程
  • 年:2018
  • 期:v.26;No.394
  • 基金:上海市科学技术委员会科研计划项目(16511103001)
  • 语种:中文;
  • 页:GWDZ201820003
  • 页数:4
  • CN:20
  • ISSN:61-1477/TN
  • 分类号:16-19
摘要
针对现有硬件条件难以满足星间高速激光通信Gbps以上的速率,给出了一种基于APRX架构的高速并行结构优化设计方案。该方案将数字下变频、匹配滤波等处理模块转化为并行结构,将时域卷积转换到频域相乘的方式实现高速匹配滤波,在系统主时钟受限的情况下进一步提高了处理速率,并对下变频、高速匹配滤波、FFT/IFFT实现结构做了简化,减少硬件资源消耗。仿真表明,该方案可以显著提高解调器处理速率并且不影响系统解调性能。
        Aiming at the fact that the existing hardware conditions are hard to meet the rate of more than Gbps between high-speed laser communications in interstellar,a high-speed parallel architecture optimization scheme based on APRX architecture is designed. In this scheme,digital processing module such as down-conversion and matched filtering is transformed into parallel structure,high-speed matched filtering is realized by converting the time-domain convolution to frequency domain multiplication,and the processing speed is further increased under the condition that the main clock of the system is limited,It also simplifies the structure of down-conversion,high-speed matched filtering and FFT/IFFT to reduce the hardware resource consumption. Simulation shows that this scheme can significantly improve the demodulator processing rate and does not affect the system demodulation performance.
引文
[1]吴从均.星间激光通信终端及其实验室检测平台光学系统研究[D].北京:中国科学院大学,2014.
    [2] Gregory M,Heine F,K?mpfner H,et al. TESATlaser communication terminal performance resultson 5.6Gbit coherent inter satellite and satellite toground links[J]. SPIE,2017:37.
    [3] Planche G,Laurent B,Guillen J C,et al. SILEXfinal ground testing and in-flight performance as-sessment[J]. Proceedings of SPIE-The Internation-al Society for Optical Engineering,1999(3615):64-77.
    [4] Gregory M,Heine F F,Lange R. Commercialoptical inter-satellite communication at high data rates[J]. Optical Engineering,2012,51(51):1202.
    [5]唐婷,杜瑜.全数字化高速数传解调器的设计与实现[J].科学技术与工程,2016,16(14):32-35.
    [6]郎迪.高速数字解调器定时及载波同步技术研究与实现[D].成都:电子科技大学,2016.
    [7]刘策伦,安建平,王翠莲,等.联合符号同步的低复杂度频域并行解调结构[J].空间电子技术,2013,10(2):17-20.
    [8]刘旺,朱江,付永明,等.一种并行的定时同步环路实现研究[J].通信技术,2013(10):1-5.
    [9] Srinivasan M,Chen C C,Grebowsky G,et al. Anall-digital high data-rate parallel receiver[J].Surface Science,1997,604(15-16):1294-1299.
    [10]刘泽,苏开荣,姜玉洁,等.卫星通信中调制解调性能的研究[J].电子技术应用,2015,41(8):83-85.
    [11]陈曦,邓振淼,焦计平.多通道高速相参同步数据采集与存储系统设计[J].电子测量技术,2013,36(12):104-107.
    [12]王必成.基于Matlab的两种长序列滤波法实现与比较[J].数字通信世界,2016(3):310.
    [13]段国栋,蒋小平,马速良,等.一种基于多相结构的高效数字下变频设计[J].电子技术应用,2014(4):52-55.
    [14]曹继华.离散信号处理与应用[M].北京:机械工业出版社,2013.
    [15]Lin C,Zhang J,Shao B. A Multi-Gigabit paralleldemodulator and its FPGA implementation[J]. IeiceTransactions on Fundamentals of ElectronicsCommunications&Computer Sciences, 2012,E95.A(8):1412-1415.
    [16]张德智,曾星星,胡倩.基于并行处理技术的宽带直扩信号捕获方法[J].电子技术应用,2016,42(9):10-13.